
Muen Component Specification

Adrian-Ken Rueegsegger, Reto Buerki

v0.7.2, April 9, 2024

Copyright © 2024 codelabs GmbH
Copyright © 2024 secunet Security Networks AG

Further publications, reprints, duplications or recordings - no matter in which form, of the entire
document or parts of it - are only permissible with the prior consent of codelabs GmbH or secunet
Security Networks AG.

1

Contents

1 Introduction 6
1.1 Components . 6
1.2 Subjects . 8
1.3 Libraries . 9

2 Resource Discovery 10
2.1 CSPECS Mechanism . 10
2.2 Subject Information (sinfo) Mechanism . 11
2.3 Operating System specific Methods . 11

3 VCPU Profiles 13

4 Configuration Parameters 14

5 Subject Monitoring 15
5.1 Register State . 16
5.2 Timed Events . 16
5.3 Interrupts . 16
5.4 Loader . 16
5.5 By Example . 16

6 Subject Lifecycle 19
6.1 Policy / Config / Compilation . 19
6.2 Command and Status Interface . 20
6.3 Usage . 20
6.4 Operation . 21

7 Subject Yield/Sleep 26
7.1 Yield . 26
7.2 Sleep . 26
7.3 Configuration . 27
7.4 Use case: Event-driven component . 27

8 Interrupt Handling 29

9 Interface API 30
9.1 Mucontrol.Command.Instance.Command_Page . 30
9.2 Foo.Sender.Response . 31
9.3 Foo.Receiver.Request . 31
9.4 Musinfo.Instance.Object . 32
9.5 Musinfo.Instance.Sched_Info . 32
9.6 Mucontrol.Status.Instance.Status_Page . 33
9.7 Debuglog.Sink.Message_Channel . 33
9.8 Hypercalls . 33
9.9 Timed Events . 33
9.10 Monitored Subject Register State . 34

10 Verification Conditions Summary (SPARK 2014) 36

2

11 Appendix 37
11.1 VCPU Profiles . 37

12 Bibliography 44

3

List of Figures

6.1 Subject Initialization State Machine . 25

4

Listings

1.1 Component Specification XML . 6
1.2 Mapping of component resources . 8
1.3 Libmudebuglog library specification XML . 9
1.4 Libmudebuglog generated config.xml . 9
2.1 CSPECS constants for SPARK/Ada . 10
2.2 Usage of CSPECS constants . 11
2.3 Acquiring minor frame tick range . 11
4.1 Code parameterization using config options . 14
5.1 Subject Monitor (SM) configuration in the policy 15
5.2 CPUID event . 17
5.3 Determining the exit reason . 17
5.4 CPUID emulation of leaf 0 . 17
5.5 End of SM main loop . 18
6.1 Declaration of Control and Status memory regions 20
6.2 Declaration of the Reset event . 20
6.3 Dependency declaration . 21
6.4 Adjustments to Subject Specification . 21
7.1 Declaration of Sleep and Yield events . 27
7.2 Declaration for monitoring ones own interrupts . 28
7.3 Event-driven Main Loop of a native Ada/SPARK component 28
8.1 Initialization of Interrupt Tables . 29
8.2 Specification of an Interrupt Handler procedure . 29
8.3 Usage of Machine attribute pragma . 29
11.1 Native vCPU . 37
11.2 VM vCPU . 40

5

Chapter 1

Introduction

In a component-based software architecture (CBA), system functionality is realized by small, un-
privileged applications, so called components.

The Muen Separation Kernel (SK) is a specialized microkernel, which allows the controlled
execution of a software component as a subject. Communication among subjects, and also between
a subject and the kernel itself is strictly regulated by a system policy, which is enforced by the
Muen SK.

This document defines the foundation of Muen components, the interfaces, parameterization,
documentation and verification. To illustrate these topics, an actual, runnable example component
is used.

This document has been generated by analyzing the annotated source code of the example
component and related sources, using git repository revision e878fd944581.

The following subsections first define the terms component, subject and library, before the actual
component mechanisms are explained.

1.1 Components
A component is a piece of software to be executed by the Muen separation kernel within a well-
defined execution environment. A Muen component consists of the following parts:

• Source code which is compiled into an executable binary

• Component specification

• Documentation

The component specification declares the binary program by means of (file-backed memory) re-
gions. It also specifies the component’s view of the expected execution environment. A component
may request the following resources from the system:

• Logical channels

• Logical memory regions

• Logical devices

• Logical events

Listing 1.1 shows the component specification XML of the example component. First, the
component defines configuration options which are used to parameterize the component (section
4), then software library dependencies are declared (section 1.3). The requires section specifies
the expectations the component has for its execution environment.

1 <?xml version="1.0" encoding="utf-8"?>
<component name="example" profile="native">

3 <config>
<boolean name="ahci_drv_enabled" value="false"/>

5 <boolean name="print_serial" value="false"/>

6

<boolean name="print_vcpu_speed" value="true"/>
7 <integer name="serial" value="123456789"/>

<string name="greeter" value="Subject running"/>
9 </config>

<depends>
11 <library ref="libmudebuglog"/>

<library ref="muinit"/>
13 </depends>

<requires>
15 <vcpu>

<vmx>
17 <masks>

<exception>
19 <Breakpoint>0</Breakpoint>

</exception>
21 </masks>

</vmx>
23 <registers>

<gpr>
25 <rip>16#0020_0000#</rip>

</gpr>
27 <cr4>

<XSAVEEnable>1</XSAVEEnable>
29 </cr4>

</registers>
31 </vcpu>

<memory>
33 <memory executable="false" logical="filled_region" size="16#1000#" virtualAddress="

16#0001_0000_0000#" writable="true"/>
</memory>

35 <channels>
<reader logical="example_request" size="16#1000#" vector="64" virtualAddress="16#0001
_0000_1000#"/>

37 <writer event="16" logical="example_response" size="16#1000#" virtualAddress="16#0001
_0000_2000#"/>

</channels>
39 <events>

<source>
41 <event id="2" logical="yield">

<subject_yield/>
43 </event>

<event id="3" logical="timer"/>
45 <event id="4" logical="sleep">

<subject_sleep/>
47 </event>

</source>
49 <target>

<event logical="inject_timer">
51 <inject_interrupt vector="37"/>

</event>
53 </target>

</events>
55 </requires>

<provides>
57 <memory executable="false" logical="interrupt_stack" size="16#2000#" type="

subject_binary" virtualAddress="16#0001_0000#" writable="true">
<fill pattern="16#00#"/>

59 </memory>
<memory executable="true" logical="text" size="16#4000#" type="subject_binary"

virtualAddress="16#0020_0000#" writable="false">
61 <file filename="example_text" offset="none"/>

<hash value="16#f09a98fdd53015ba2c2484b330b68bbad129d60054a6f610f26e9efe300fb379#"/>
63 </memory>

<memory executable="false" logical="rodata" size="16#1000#" type="subject_binary"
virtualAddress="16#0020_4000#" writable="false">

65 <file filename="example_rodata" offset="none"/>
<hash value="16#c647749cba2a151be2a1c451441bfc4882e76f8a554c74ee497dfdcc55b70785#"/>

67 </memory>
<memory executable="false" logical="data" size="16#1000#" type="subject_binary"

virtualAddress="16#0020_5000#" writable="true">
69 <file filename="example_data" offset="none"/>

<hash value="16#3466ddf188d8d88cef240e0f02dedb3c09d5a21d6c27b3f3299b74dcd3e30393#"/>
71 </memory>

7

<memory executable="false" logical="bss" size="16#3000#" type="subject_binary"
virtualAddress="16#0020_6000#" writable="true">

73 <fill pattern="16#00#"/>
</memory>

75 <memory executable="false" logical="stack" size="16#2000#" type="subject_binary"
virtualAddress="16#1000#" writable="true">

<fill pattern="16#00#"/>
77 </memory>

</provides>
79 </component>

Listing 1.1: Component Specification XML

The example component expects the following shared memory channels:

• example_request

• example_response

These are used to retrieve requests from a client, and to send a response (section 9).
The example component also expects the availability of three source events with given IDs, and

it is the target endpoint for the inject_timer event.
An integrator must link the logical resources of a component specification with the actual

system policy. How this is done is explained in section 1.2.
The provides section specifies memory regions which are provided by the component. Such

regions will be added to the physical memory regions of the system and linked into the subject
referencing the component by the mucfgexpand tool. Usually, the provided regions consist of the
component binary, but it is possible to provide arbitrary regions, with or without content.

In order to simplify the integrators job, the mucbinsplit tool can be used to generate the
component binary regions with the correct permissions automatically. See the Muen System Spec-
ification [1] document for a detailed description of the tool.

1.2 Subjects
A subject is an instance of a component, i.e. an active entity that is executed by the Muen kernel
during runtime. Its specification references a component and maps the requested logical resources
to physical resources provided by the system.
<subject name="example">

2 <events>
<source>

4 <group name="vmx_exit">
<default physical="system_panic">

6 <system_panic/>
</default>

8 </group>
</source>

10 </events>
<monitor>

12 <state subject="storage_linux" logical="monitor_state" virtualAddress="16#001e_0000#"
writable="false"/>

<loader logical="reload" subject="example" virtualAddress="16#0000#"/>
14 </monitor>

<component ref="example">
16 <map logical="example_request" physical="example_request"/>

<map logical="example_response" physical="example_response"/>
18 <map logical="debuglog" physical="debuglog_example"/>

<map logical="sleep" physical="subject_sleep"/>
20 <map logical="yield" physical="subject_yield"/>

<map logical="timer" physical="example_self"/>
22 <map logical="inject_timer" physical="example_self"/>

<map logical="control" physical="control_example"/>
24 <map logical="status" physical="status_example"/>

<if variable="ahci_drv_active" value="true">
26 <map logical="blockdev_request2" physical="blockdev_request2"/>

<map logical="blockdev_response2" physical="blockdev_response2"/>
28 <map logical="blockdev_shm2" physical="blockdev_shm2"/>

</if>

8

30 <map logical="filled_region" physical="example_filled_region"/>
</component>

32 </subject>

Listing 1.2: Mapping of component resources

In listing 1.2, the logical channels example_request, example_reponse and debuglog
of the example component are mapped to physical channels of the system policy via map elements.
The debuglog channel is not directly visible in the 1.2 listing, as it is added by the dependency
to the libmudebuglog library (which is declared in the component XML listing depends section).

Also, the requested source and target events are mapped to global system events.
Validators enforce that all requested resources of a component are properly mapped by the

subject.
Note that subjects do not need to have all resources specified in their component description.

Instead, extra resources such as device and/or memory mappings can be assigned to a subject.
This is useful for components which are able to discover the available resources at runtime by using
configuration mechanism like PCI configuration space enumeration, ACPI or the Muen subject
information page API specified in section 9.4.

1.3 Libraries
Code which is used by multiple software components is usually factored out into a library to reduce
code duplication. This is also possible for Muen components. In contrast to shared dynamic
libraries of a generic multi-purpose OS, only the source code and policy resources are shared, not
the address space of the library itself. The code lives separately in all components which use the
library. Therefore, Muen component libraries can be seen as a static library in generic OS terms.

A Muen component library provides a library specification, like the example provided in listing
1.3. Muen components declare a dependency on a library in the XML specification as outlined
in section 1.1. If the library in question is written in SPARK/Ada, the component project also
declares the dependency in its GNAT project file. After that, the functionality provided by the
software library is accessible from the component source code.
<library name="libmudebuglog">

2 <include href="config.xml"/>
<requires>

4 <channels>
<writer logical="debuglog" virtualAddress="16#000f_fff0_0000#" size="$

logchannel_size"/>
6 </channels>

</requires>
8 </library>

Listing 1.3: Libmudebuglog library specification XML

Similar to components, the library requires certain resources to operate. In this case, a
debuglog channel is expected at the given virtualAddress with the specified size. Note
that the size is provided by a variable. The library intends to write to this shared memory channel
as a channel writer. A component depending on this library inherits the requested resource from
the library, and the system integrator must map them to physical system resources at the subject
level.

The example XML specification also contains an include directive for another XML file:
config.xml. This mechanism is used to generate configuration settings during the build de-
pending on the actual system policy. This task is component-specific and can be implemented
via various solutions, e.g. an XSLT transform or a Python script to name just two. In this case,
the size of the debugserver log channel is extracted from the system policy, see listing 1.4. More
specifically, it contains the value for the $logchannel_size variable mentioned before in listing
1.3.
<config>

2 <string name="logchannel_size" value="16#0002_0000#"/></config>

Listing 1.4: Libmudebuglog generated config.xml

9

Chapter 2

Resource Discovery

In order to interact with the environment, components must know the properties of resources
like channels, memory or hardware devices. Depending on the actual resource, possible resource
properties are virtual address, memory size, event or I/O port numbers.

The Muen platform provides two main methods to learn about such properties. The main
difference is the point in time the value of a property is acquired:

• Build-time static

• Dynamic discovery at runtime

While the first mechanism is mainly used by native (SPARK/Ada) components, the second
mechanism is often applied by a traditional guest virtual machine with a full-fledged OS. Since
all resources are already known at compile-time, and because native (verified) components should
be kept as simple as possible, they refrain from dynamic discovery and use source code constants
generated by the CSPECS mechanism described in section 2.1.

An operating system like Linux tends to discover its resources at runtime. This is possible via
the sinfo API introduced in section 2.2 and specified in detail in section 9.4.

While resources can be discovered via the sinfo and Component Specifications (CSPECS) mech-
anisms, there exist OS-specific methods to determine available resources, which are also supported
by the Muen platform. They are described in section 2.3.

It is also possible to combine multiple methods as needed, like it is done in the example
component or in the Muen Linux guest operating system where both generated ACPI tables and
the sinfo API are employed to discover resources.

2.1 CSPECS Mechanism
During the component build process, the component specification in XML format outlined in
section 1.1 and 1.3 is translated to SPARK/Ada specifications using the mucgenspec tool, see
[1].

The generated packages in the Example_Component hierarchy contain resource properties as
constants for SPARK/Ada, see listing 2.1 as an example. It contains all the constants required to
access channel resources.
pragma Style_Checks (Off);

2

package Example_Component.Channels
4 is

6 Example_Request_Address : constant := 16#0001_0000_1000#;
Example_Request_Size : constant := 16#1000#;

8 Example_Request_Kind : constant Channel_Kind := Channel_Reader;
Example_Request_Vector : constant := 64;

10

Example_Response_Address : constant := 16#0001_0000_2000#;
12 Example_Response_Size : constant := 16#1000#;

Example_Response_Kind : constant Channel_Kind := Channel_Writer;
14 Example_Response_Event : constant := 16;

10

16 end Example_Component.Channels;

Listing 2.1: CSPECS constants for SPARK/Ada

The constants can be used in the source code of a component as illustrated in listing 2.2.
Request : Foo.Message_Type

36 with
Volatile,

38 Async_Writers,
Address => System’To_Address

40 (Example_Component.Channels.Example_Request_Address);

Listing 2.2: Usage of CSPECS constants

The Ada record type representing the example request channel data is placed at the memory
location designated in the component XML specification using Ada Address and Volatile
aspects in combination with the CSPECs generated resource constants.

2.2 Subject Information (sinfo) Mechanism
The Muen subject information (sinfo) and scheduling information (schedinfo) APIs allow the dis-
covery of resource and scheduling data at runtime.

The information is provided by mapping the subject info and scheduling info pages into the
virtual address space of a subject. This task is performed automatically by the mucfgexpand
tool during the system build (see [1] for more information).

A component must verify the validity of the sinfo page by calling the appropriate validation
method. In a verified SPARK/Ada component, it must be shown that this property holds before
calling an actual getter function of the sinfo API.

Listing 2.3 showcases an sinfo API access in the code of the example component. The code
acquires the start and end ticks of the current scheduling minor frame. This information can be
used to implement a notion of relative time, or as a base for a virtual timer mechanism.

110 Minor_Start : constant SK.Word64 := Musinfo.Instance.TSC_Schedule_Start;
Minor_End : constant SK.Word64 := Musinfo.Instance.TSC_Schedule_End;

112

Listing 2.3: Acquiring minor frame tick range

See section 9.4 for the sinfo API specification.

+ It should be noted that sinfo as well as scheduling info are read-only data structures
mapped into a subject’s address space. Accessing this information via the respective
APIs essentially results in reading the corresponding value from memory. No direct
interaction with other parts of the system, including and in particluar the Muen kernel,
occurs.

2.3 Operating System specific Methods
To allow resource discovery at runtime, the following additional methods are currently implemented
for Linux VMs:

• ACPI tables

• Linux Zero-Page (ZP)

Static ACPI tables are generated by the mugenacpi tool and mapped into the virtual address
space of a Linux guest by mucfgexpand.

On the Intel x86 Architecture, Linux expects a so called zero-page (ZP) with information about
initramfs location, kernel command line and console information mapped into its address space.
These tasks are performed by the mugenzp and mucfgexpand tool respectively.

11

For MirageOS/Solo5 unikernels a so called boot info structure is generated by the mugensolo5
tool. It tells the unikernel how much memory it can use, the TSC frequency, command line
parameters and where its application manifest is located.

Refer to the Muen System Specification [1] for more information about the involved tools.
Similar methods might be employed by other guest operating systems when porting them to

Muen.

12

Chapter 3

VCPU Profiles

A virtual CPU (vCPU) profile controls the execution behavior of the component’s virtual CPU. It
allows the specification of:

• Virtualization controls

– Runtime/Entry/Exit controls
– Exception host/guest handling
– CR0 host/guest ownership
– CR4 host/guest ownership

• Access to Model-Specific Registers (MSRs)

• Initial register and segment values

VCPU profiles are assigned in the component specification at integration time and enforced by
the SK. Muen differentiates two vCPU profiles which have different settings of the above:

• vCPU for native subjects

• vCPU for VM subjects

The vCPU profile of a native subject is much more restrictive, as Muen native subjects are
written in SPARK/Ada with a zero-footprint (ZFP) runtime where absence of runtime errors is
proven. Exception occurrence for such a component is a critical error which should be treated
accordingly.

The validator tool mucfgvalidate ensures that the invariants for the proper execution of
the Muen SK hold. This is done during integration, by verifying the vCPU profile of each subject.
The kernel itself does not modify these settings during runtime. For example, it is not allowed
to disable the VMX preemption timer of a subject, as this is the mechanism used by the SK to
preempt subjects according to the scheduling plan.

See the Muen System Specification [1] document for the specification of all elements of a vCPU
profile. The current vCPU profiles for VM and native Muen components can be found in the
Appendix, section 11.1.

+ When assigning access to MSRs, it is imperative to carefully review the potential impact
the Model-Specific Register can have. This is particularly true for global MSRs that are
not handled per-subject (e.g. in contrast to IA32_EFER). Furthermore, only a small
portion of MSRs are declared as architectural, see Intel SDMs.

13

Chapter 4

Configuration Parameters

Components can be parameterized using the CSPEC mechanism as described in section 2.1. This
mechanism generates SPARK/Ada code from a component specification in XML format. Another
form of supported parameterization based on the CSPEC mechanism are the specification of con-
figuration options. Again, this section uses the example component as illustration. The component
was built using the following parameters.

Name Type Value

ahci_drv_enabled boolean false
This knob controls whether or not the muenblock client code is enabled in the
example component.

greeter string Subject running
String configuration option example

print_serial boolean false
Boolean configuration option example

print_vcpu_speed boolean true
Another boolean configuration option example

serial integer 123456789
Integer configuration option example

As listed in the table above, the following configuration types are supported:

• Integer

• Boolean

• String

A component can use the generated constants to parameterize certain parts of the code. Listing
4.1 shows how the configuration options from the table above are used in the code of the example
component.

pragma Debug (Example_Component.Config.Print_Serial,
86 Log.Put_Line (Item => "Serial " & SK.Strings.Img

(SK.Word64 (Example_Component.Config.Serial))));
88 pragma Debug (Example_Component.Config.Print_Vcpu_Speed,

Log.Put_Line (Item => "VCPU running with " & SK.Strings.Img
90 (Musinfo.Instance.TSC_Khz) & " Khz"));

Listing 4.1: Code parameterization using config options

The example serial number and the vCPU speed are only printed if the respective boolean
configuration options are set to true in the component specification XML.1

1pragma Debug only executes the statement after the colon if the boolean expression before the colon is true

14

Chapter 5

Subject Monitoring

The subject monitoring concept consists of having a designated subject handle traps of another
subject. This is useful for example to implement a trap-and-emulate approach for VM subjects or
a debugger.

On execution of a trapping instruction in the monitored subject, the kernel hands over execution
to the configured subject monitor (SM) to deal with the event. A potential trap is the execution
of CPUID instruction for example1.

Handling of such an event can range from ignoring it to fully-fledged device emulation using a
device model. Execution may be handed back to the faulting subject after handling of the event.

The system policy allows the configuration of a monitor subject as seen in listing 5.1.
1 <monitor>

<state subject="storage_linux" logical="monitor_state" virtualAddress="16#001e_0000#"
writable="false"/>

3 <loader logical="reload" subject="example" virtualAddress="16#0000#"/>
</monitor>

Listing 5.1: Subject Monitor (SM) configuration in the policy

The policy writer defines the access permissions to the monitored subject state. The following
state items are available:

• State
CPU register state of monitored subject

• Timed Events
Timed events of monitored subject

• Interrupts
Interrupts of monitored subject

• Loader
Loader mechanism used to reset monitored subject to initial state

It is possible to define multiple state items per type, referencing different subjects. Writable
monitoring is only allowed by subjects belonging to the same scheduling group or siblings. Read-
only monitoring has no such restrictions. Furthermore, a subject may monitor its own state, e.g.
interrupts, which may be useful in combination with sleeping, see 7.4.

The self-referencing loader element shown in listing 5.1 is part of the subject lifecycle mech-
anism explained in chapter 6.

The following subsections briefly introduce each state configuration, before the actual interface
API is presented. See the Muen System Specification [1] for more details on the monitor element
and its implications.

1CPUID always traps in VMX non-root mode

15

5.1 Register State
The CPU register state of the monitored subject is mapped into the monitor subject address space
at the specified virtualAddress. The writable attribute defines whether write access of the
monitor subject is allowed. A monitor with write access can alter the CPU register state of the
monitored subject at runtime.

The SM register interface API is specified in section 9.10.

5.2 Timed Events
The timed events page of the monitored subject is mapped into the monitor subject address space
at the specified virtualAddress. The writable attribute defines whether write access of the
monitor subject is allowed. The programming interface is the same as for the SM subject itself,
see section 9.9.

The monitored timed event mechanism is useful if the monitored subject should be preempted
at certain points in time, i.e. the execution should be handed over from the monitored subject to
the SM subject.

+ Currently, the monitored subject has unconditional access to its own timed events page
and could therefore clear the event set by the monitor. The mechanism is therefore not
suitable to enforce preemption.

5.3 Interrupts
The subject interrupts page of the monitored subject is mapped into the monitor subject address
space at the specified virtualAddress. The writable attribute designates whether write
access by the monitor subject is allowed.

The interrupts page contains an array of four 64-bit words, which designate the 256 interrupts
to inject into the monitored subject. If write access is granted, the subject monitor can use this
mechanism to inject arbitrary interrupts into the monitored subject.

5.4 Loader
The memory regions of the monitored subject are mapped into the monitor subject address space
at the specified virtualAddress. The writable attribute defines whether write access to these
regions is allowed for the SM.

Besides potential other use-cases, the loader concept can be applied to reset a subject to its
initial state, perform decoding of a trapping instruction or to (periodically) check the memory
content of the monitored subject against hash sums.

See the Muen System Specification [1] for the definition of the loader element with an in-depth
description of the mechanism (element loader, type loaderSubjectRefType).

Chapter 6 gives an in-depth explanation of how this concept is leveraged to implement subject
reset.

5.5 By Example
This section illustrates the monitoring concept using the SM component for Linux, which is part
of the Muen ecosystem of available components written in SPARK 2014. It is used to enable the
execution of Linux as a VM subject on Muen.

The SM component has the CPU register state of the associated monitored Linux VM mapped.
Since the SM for Muen Linux is quite simple, it only maps the CPU register state, the timed
event/interrupt pages and loader functionality is not required to fulfill its task.

SM declares a package-level State variable of type SK.Subject_State_Type, as specified
in section 9.10. The address of the variable in memory must be set using the Ada Address aspect,
with the value as configured in the SM component monitor/state specification. The Volatile

16

aspect must be used as well, to tell the compiler that the value of this variable may change outside
of the programming language boundary.

Using the State variable, SM is able to inspect and alter the subject CPU register state of the
monitored subject in response to a trap. For illustrative purposes, it is assumed that the monitored
subject executes the CPUID instruction, which always traps in VMX non-root mode. The policy is
setup so that a handover from the monitored subject to SM occurs. The following snippet shows
the XML events section of the monitored subject:
<events>

2 <source>
<group name="vmx_exit">

4 ...
<event id="10" logical="cpuid" physical="trap_to_sm_1"/>

6 ...
</group>

8 </source>
</events>

Listing 5.2: CPUID event

On CPUID2 in the monitored subject, the kernel inspects the events table of the subject after
exit and, according to its static configuration, hands over execution to SM.

SM first examines the exit reason of the associated subject, by using the aforementioned State
variable:

96 Exit_Reason := State.Exit_Reason;

98 if Exit_Reason = SK.Constants.EXIT_REASON_CPUID then
Exit_Handlers.CPUID.Process (Action => Action);

100 elsif Exit_Reason = SK.Constants.EXIT_REASON_INVLPG

Listing 5.3: Determining the exit reason

If it concludes that the exit was caused by the execution of CPUID, it calls the handler for this
exit reason. It does the same for other exit reasons of interest. If there is no handler for a specific
exit reason, execution of the monitored subject is halted by stopping the vCPU. This is done by
calling SK.CPU.Stop, which executes cli; hlt in a loop. By not returning to the monitored
subject, the cooperative scheduling group is now in a halted state.

The CPUID.Process procedure called on a CPUID exit emulates a vCPU with certain features.
Therefore, depending on the requested CPUID leaf in the RAX register, the CPU register state is
updated to reflect the result of the CPUID instruction back to the monitored subject:

111 RAX : constant SK.Word64 := State.Regs.RAX;
RCX : constant SK.Word64 := State.Regs.RCX;

113

Values : CPU_Values.CPUID_Values_Type;
115 Res : Boolean;

begin
117 Action := Types.Subject_Continue;

State.Regs.RAX := 0;
119 State.Regs.RBX := 0;

State.Regs.RCX := 0;
121 State.Regs.RDX := 0;

123 CPU_Values.Get_CPUID_Values
(Leaf => SK.Word32’Mod (RAX),

125 Subleaf => SK.Byte’Mod (RCX),
Result => Values,

127 Success => Res);
if not Res then

129 pragma Debug (Sm_Component.Config.Debug_Cpuid,
Debug_Ops.Put_Line

131 (Item => "Ignoring unknown CPUID leaf "
& SK.Strings.Img (RAX)

133 & ", subleaf " & SK.Strings.Img (RCX)));
return;

135 end if;

2Event IDs correspond to the VMX Basic Exit Reason, Intel SDM Vol. 3D, Appendix C

17

137 case RAX is
when 0 =>

139

-- Cap highest valid CPUID number.
141

State.Regs.RAX := 16#d#;
143

State.Regs.RBX := SK.Word64 (Values.EBX);
145 State.Regs.RCX := SK.Word64 (Values.ECX);

State.Regs.RDX := SK.Word64 (Values.EDX);
147 when 1 =>

Listing 5.4: CPUID emulation of leaf 0

After that, the SM main procedure is instructed to continue monitored subject execution by
setting the Action out parameter of the Process procedure to Subject_Continue. The
SM main procedure then resumes the monitored subject by increasing the RIP and calling the
hypercall procedure with event ID designated by the Events.Resume_Subject_ID constant.
This triggers a handover back to the monitored subject:

case Action
134 is

when Types.Subject_Start =>
136 SK.Hypercall.Trigger_Event

(Number => Sm_Component.Events.Resume_Subject_ID);
138 when Types.Subject_Continue =>

RIP := State.RIP;
140 Instruction_Len := State.Instruction_Len;

State.RIP := RIP + SK.Word64 (Instruction_Len);
142 SK.Hypercall.Trigger_Event

(Number => Sm_Component.Events.Resume_Subject_ID);
144 when Types.Subject_Halt =>

Debug_Ops.Dump_State;
146 SK.CPU.Stop;

end case;
148

Listing 5.5: End of SM main loop

The monitored subject then continues execution at the instruction following cpuid in the
scheduling slot of SM until the next trap occurs.

18

Chapter 6

Subject Lifecycle

The subject lifecycle management concept provides a lightweight mechanism to initialize and reset
native subjects. It allows to set up the memory resource of a subject to a well-known state prior
to the execution of subject code.

The initialization of the subject runtime environment is performed by a dedicated setup stub
that runs before the effective subject code starts execution. To enable external management
and synchronization, the current lifecycle state is reported via a so called Status Page (detailed
description see 9.6). Commands are read from a Command Page (see 9.1). The commands are
written by an external control/management subject (controller) that orchestrates all subjects under
its purview.

A watchdog (WD) timer mechanism instructs a subject to update a timestamp value on the
status page in regular intervals. This enables the controller subject to determine if a subject is
alive or has become stuck. The watchdog value must be updated within the desired period during
regular subject execution, outside of the initialization code/stub.

The current epoch value, communicated as part of the command interface, differs between
subject restarts.

6.1 Policy / Config / Compilation
On the policy level, the initialization stub is treated as a library. To activate the init/reset func-
tionality, a component simply declares a dependency in the component XML specification, see
6.3.2.

6.1.1 Memory
Read-only copies of writable memory regions and matching hashes must be specified in the subject
specification. The monitor/loader mechanism with a reference to the subject itself can be used so
the mappings are swapped/complemented with read-only source regions. This way all necessary
regions are made reloadable by the expander.

6.1.2 Entry Point
The RIP is set in the XML specification of the Muinit library. Since Mucbinsplit will not
overwrite an already present vCPU rip value, no other change is necessary. After initialization, a
jump to the start address of the text memory region is performed to start execution of the actual
subject code.

The text memory region is defined as follows:
• Logical name: text

• Type: subject_binary

• Executable: True

• Writable: False

• Content: file-backed

19

6.1.3 Compilation
While on the policy level, the initialization code is treated as a library, on the source level it is
compiled and linked as an independent binary. This avoids mixing of text, data etc of the init and
the actual component code, which is beneficial for certification. Additionally, the initialization can
perform a complete reset of the component memory without interfering with its own state.

The initialization code is linked to a different address (16#0010_0000#) than regular Ada/S-
PARK component binaries (16#0020_0000#) to enable co-existence in the same address space.

6.2 Command and Status Interface
The initialization code implements a simple state machine by waiting for a specific, expected
command, executing the associated action and then reporting completion of said action by updating
the status.

A special command value Mucontrol.Commands.CMD_SELF_CTRL designates that the ini-
tialization code should not wait for further instructions but instead perform initialization in one
go.

A watchdog interval of Mucontrol.Commands.WD_DISABLED designates that watchdog func-
tionality is disabled.

For the detailed specification of the Command Interface see section 9.1. The Status Interface
is specified in section 9.6.

6.3 Usage
This section describes the XML adjustments which are required to make a component / subject
reloadable.

6.3.1 System Policy
Add physical memory regions to back new control and status pages.
...

2 <memory>
<memory name="control_foobar" size="16#1000#" caching="WB">

4 <fill pattern="16#00#"/>
<hash value="none"/>

6 </memory>
<memory name="status_foobar" size="16#1000#" caching="WB">

8 <hash value="none"/>
</memory>

10 </memory>
...

Listing 6.1: Declaration of Control and Status memory regions

If a subject is placed under self-control, the fill pattern of the control page can be set to
16#ff#. In that case the corresponding status page must have fill pattern 16#00# to ensure
proper initialization as the self-controlled subject may not access the status page at all. Since
both memory regions are used during initialization, the hash of these two regions is set to none.
With this, they are skipped during hash validation without having to implement some form of
special-casing in the init stub.

Add a physical reset event.
1 <events>

<event name="reset_foobar" mode="asap"/>
3 ...
</events>

Listing 6.2: Declaration of the Reset event

20

6.3.2 Component Specification
Add a dependency to Muinit.
<component name="foo" profile="native">

2 <depends>
<library ref="muinit"/>

4 </depends>
...

6 </component>

Listing 6.3: Dependency declaration

If a component requires access to the status and command pages during execution, i.e. beyond
the initialization, also add a dependency on libmucontrol. Examples for this use case are
updating the Watchdog Timer Value or Time subject of the demo system setting the runtime
status to STATE_FINISHED after successfully publishing time information.

6.3.3 Subject Specification
On the subject level, the following steps are necessary:

• Add mappings for Control and Status memory regions.

• Map reset event with ID 63 to give it the highest priority. This makes sure that if a reset
event is pending it will be performed upon the next entry into the subject.

• Add loader element with reference to the subject itself.

<subject name="foobar">
2 ...

<events>
4 <target>

<event id="63" logical="reset" physical="reset_foobar">
6 <reset/>

</event>
8 ...

</target>
10 </events>

<monitor>
12 <loader subject="foobar" logical="reload" virtualAddress="16#0000#"/>

</monitor>
14 <component ref="foo">

<map logical="control" physical="control_foobar"/>
16 <map logical="status" physical="status_foobar"/>

</component>
18 </subject>

Listing 6.4: Adjustments to Subject Specification

6.4 Operation
This section gives a description of the high-level operation.

The Subject Initialization Stub implements the finite state machine depicted in figure 6.4.
Transitions are performed when the init code is in the given state and the specified command is
read from the command interface. Table 6.1 lists the commands issued by the controller and the
action performed by the Subject Initialization code.

+ Since the Status Interface is writable by the potentially untrustworthy component code,
its content can only be relied upon after the delivery of the reset event up until setting
command to CMD_RUN and observing the status STATE_RUNNING. The reset event
assures that the init code is executed and that the component cannot simply fake
transitions by operating on the status page.

21

Command Action
Sync Set status to SYNCED and wait for next command
Erase Zeroize writable memory regions
Prepare Set initial content of writable memory regions by copying data from

corresponding read-only regions with matching hash
Validate Calculate and compare hashes for all memory regions that specify a

hash. Report failure if a hash mismatch is detected
Run Set initial register values, clean up stack, set status running and jump

to subject code
Self-Control Perform all initialization steps and start running subject code without

further command processing

Table 6.1: Commands and their associated actions

6.4.1 Initialization
Subject initialization consists of the following steps:

1. Initialize the status interface by clearing all data and setting the state to STATE_INITIAL.

2. Check that Subject Info is valid. If it is not valid, set error on the status interface and return
with Success flag set to False.

3. Wait for synchronization command.

4. On Failure, signal error by setting status to DIAG_UNEXPECTED_CMD.

5. On Success, set status to STATE_SYNCED and wait for either the Erase or Prepare command.

6. On Failure, signal error by setting status to DIAG_UNEXPECTED_CMD.

7. For every writable memory region except for the stack, the status interface, mapped subject
states and timed event regions, erase their content by filling the entire region with zeros. The
Sinfo index of the region currently being processed is set as diagnostics value.

8. On Success and erase command, set status to STATE_ERASING.

9. Erase all writable memory regions by clearing them with zeros. Then, set the status to
STATE_ERASED and wait for the Prepare command.

10. On Failure, signal error by setting status to DIAG_UNEXPECTED_CMD and return.

11. On Success, set status to STATE_PREPARING.

12. Set up writable memory regions that have initial content by either copying the content from
a read-only source region or filling them with a pattern.

13. On Failure, signal error and return. The diagnostics field contains the Sinfo index of the
memory region that was being processed.

14. On Success, set status to STATE_PREPARED and wait for the Validate command.

15. On Failure, signal error by setting status to DIAG_UNEXPECTED_CMD and return.

16. On Success, set status to STATE_VALIDATING.

17. Verify hashes of all1 memory regions. The entire content of each memory region is hashed
and the resulting value is compared to the reference hash contained in the corresponding
Sinfo entry.

18. On Failure, signal error and return. The diagnostics field contains the Sinfo index of the
memory region that was being processed.

1This also includes read-only memory regions.

22

19. Otherwise, set status to STATE_VALIDATED and wait for the Run command.

20. On Failure, signal error by setting status to DIAG_UNEXPECTED_CMD.

21. On Success, set status to STATE_INITIALIZING. The final transition to STATE_RUNNING
state is done just prior to jumping to the code of the component that has just been initial-
ized/reset.

+ On CMD_SELF_CTRL the subject may perform all of the above steps, without further
synchronization/waiting for additional commands.

+ Since the Assembly uses a a few registers to perform stack clearing etc, the registers
R10-R15 will not retain their initial value. A component or subject must not make use
of the initial values of these registers.

6.4.2 VM Components
For VM subjects, the same procedure as for native subjects is not viable (e.g. 2 level page tables
would require IA32-e mode transition and creation of initial page tables etc.). Thus, we build on
the existing loader concept. One simplification is that a loader only needs to support a single VM
subject and no native subjects.

Since the subject loader (SL) in effect performs the same functionality as the initialization/reset
stub for native subjects, it directly operates on the status and command pages which are associated
with the VM subject. It has no status/command pages for itself. The necessary Status and
Command pages are added to the loader component XML specification by declaring a library
dependency on libmucontrol.

Since the Loader, the corresponding Linux subject as well as the associated SM are part of
the same scheduling group, a form of light cooperation between SM and SL is necessary. The
initialization process is as follows:

1. SM starts execution of its own initialization code. Synchronization with the controller com-
ponent happens as described above. The Controller can force handover to SM by resetting
Linux state.

2. After successful setup, SM enters main loop with "Invalid guest state" as Linux exit reason.

3. SM checks if Linux reset event is available. If SM Sinfo does not contain Reset_Linux
event →go to step 9.

4. Trigger Reset_Linux event. This results in handover to Linux with reset target action.
The initial Linux state has CR4.VMXE = 0, which triggers an immediate handover back to
SM due to "Invalid guest state".

5. Trigger Load_Linux event to handover execution to SL.

6. SL syncs with controller component.

7. SL performs Linux memory initialization using the same code as the native subject initial-
ization, reused via the Libmuinit library.

8. After successful setup of Linux memory, SL triggers a handover to SM.

9. SM inspects Linux Status Interface filled in by SL to check that no error occurred.

10. If Linux State has Error bit set, print error message and halt subject execution.

11. Check if SM is monitoring an AP Linux (CR0.PE = 0): wait for wakeup event.

12. SM makes Linux runnable by setting CR4.VMXE in Linux subject state.

13. SM triggers handover to Linux thereby starting its execution.

Except for the handover events passing on the thread of execution (without interrupt injection),
SL and SM do not communicate directly.

23

+ With this division of labor between SM and SL each subject has somewhat complemen-
tary privileges regarding the Linux subject: SM has access to the subject state while
SL only has access to Linux’s memory.

+ SL itself does not need reset functionality since it does not keep any state. This also
enables 1:1 reuse of Libmuinit just as Muinit does.

+ SM maps the Linux Status page read-only to check for error conditions on loading Linux
by SL. This avoids having an additional signalisation mechanism between SM and SL.

24

Initial

Synced

SYNC

Erasing

ERASE

Preparing

PREPARE

Erased

Error

PREPARE

Prepared

Validating

VALIDATE

Validated

Initializing

RUN

Running

Finished

Reset

Figure 6.1: Subject Initialization State Machine

25

Chapter 7

Subject Yield/Sleep

Subjects which are part of the same scheduling group can do efficient, cooperative scheduling
using handover events. To make more efficient use of CPU time of scheduling partitions, a system
integrator can assign multiple scheduling groups, whose subjects do not require strict temporal
isolation, to the same partition. All the scheduling groups within a partition are scheduled round
robin with preemption and the opportunity to yield and/or sleep. An example for assignment
to the same scheduling partition could be subjects that are event-driven or perform polling of
hardware but do not process data in a steady/constant way.

7.1 Yield
Subject can yield execution for the rest of the minor frame if it does not require further CPU time. It
can perform a yield operation by explicitly triggering a source event with action subject_yield
or by causing a trap with the same action, e.g. via the PAUSE instruction when PAUSE Exiting
is enabled in the subjects’ vCPU profile.

When a subject yields, the kernel selects the next active scheduling group of the partition and
resumes execution of the active subject of the selected group. If no other group is active, the
subject which yielded will be scheduled again.

Scheduling groups of a partition are scheduled round robin. A subject that has yielded will
eventually be scheduled again as soon as all other active groups of the partition have had their
turn. The currently active group is changed in every new minor frame.

7.2 Sleep
Subjects which are event-driven and have no more work to do, can request to be put to sleep until
they should be woken up. Such a subject can perform the sleep operation by explicitly triggering
a source event with action subject_sleep or by causing a trap with the same action, e.g. via
the HLT instruction when HLT Exiting is enabled in the subject’s vCPU profile.

When a subject requests sleep, the kernel marks the scheduling group as inactive, selects the
next active scheduling group of the partition and resumes execution of the active subject of the
selected group. If no other group is active, the whole scheduling partition is marked as sleeping
and the subject which requested to sleep is run with VMX Activity State set to HLT, i.e it will be
scheduled but not execute any instruction.

The following events will lead to the wakeup of a a sleeping subject:

• Pending Interrupt

• Pending Target Event

• Timed Event expiry

As soon as a subject, and as a consequence its associated scheduling group, becomes active,
it will be considered again whenever a new scheduling group is being selected for execution in a
scheduling partition.

26

+ The instruction sequence cli; hlt; may continue execution without issuing an inter-
rupt when a pending interrupt is inserted. This is a deviation from Intel ISA but similar
to the situation when an NMI occurs. To guard against this behavior, the instruction
sequence can be put inside a (infinite) loop.

7.3 Configuration
The following XML excerpt illustrates how to configure a subject to be able to use the PAUSE and
HLT instructions to trigger sleep and yield actions.
<events>

2 ...
<event mode="kernel" name="subject_yield"/>

4 <event mode="kernel" name="subject_sleep"/>
..

6 </events>
...

8 <subjects>
<subject ...>

10 <vcpu>
<vmx>

12 <controls>
<proc>

14 <!-- VM-Exit on HLT instruction -->
<HLTExiting>1</HLTExiting>

16 <!-- VM-Exit on PAUSE instruction -->
<PAUSEExiting>1</PAUSEExiting>

18 </proc>
</controls>

20 </vmx>
</vcpu>

22 <events>
<source>

24 <group name="vmx_exit">
<!-- Exit Reason 12: HLT -->

26 <event id="12" logical="sleep" physical="subject_sleep">
<subject_sleep/>

28 </event>
...

30 <!-- Exit Reason 40: PAUSE -->
<event id="40" logical="yield" physical="subject_yield">

32 <subject_yield/>
</event>

34 </group>
</source>

36 </events>
...

38 </subject>
...

40 </subjects>

Listing 7.1: Declaration of Sleep and Yield events

+ In order for these instructions to cause a VM-Exit the corresponding HLT/PAUSE
Exiting vCPU controls must be set to 1. This is not necessary if yield an sleep are
specified as vmcall source event actions and explicitly triggered as hypercalls.

7.4 Use case: Event-driven component
An event-driven server subject can use the sleep mechanism to avoid busy-looping and only become
active when there is work pending. Producers, of which there can be multiple, inform the subject
about work that it should process by sending an event with an associated interrupt. To avoid having
to process each interrupt one-by-one, the server subject can map its own pending interrupts into
it’s address space.

27

First off, the subject must define a sleep event in the policy, as illustrated in in the previous
section 7.3.

Then, to monitor interrupts, the following is added to the subject’s monitor section in the
system policy:
<monitor>

2 <interrupts subject="$nameOfSubject" virtualAddress="16#....#" writable="true"/>
</monitor>

Listing 7.2: Declaration for monitoring ones own interrupts

With this the pending interrupts data structure used by the kernel is mapped into the subject’s
address space at the specified memory address.

The following code listing illustrates how the main processing loop of the server subject could
be implemented.

1 Main_Loop :
loop

3 if not Pending_Interrupt_Present then

5 -- Go to sleep when no pending interrupts are present.

7 CPU.Hlt;
end if;

9

-- Clear pending interrupts prior to processing by writing to our own
11 -- interrupts page that is mapped into our address space using the

-- monitor mechanism. This way interrupts that arrive while we are
13 -- processing the ones that woke us up from sleep, will be marked as

-- pending and not get lost.
15

Clear_Pending_Interrupts;
17

Process_Loop :
19 loop

Channel.Read (Data => Buffer,
21 Data_Present => Received);

exit when not Received;
23 Process (Data => Buffer);

end loop Process_Loop;
25 end loop Main_Loop;

Listing 7.3: Event-driven Main Loop of a native Ada/SPARK component

The subject clears all pending interrupts by writing to the monitored interrupt memory page
(Clear_Pending_Interrupts). In conjunction with disabling interrupts via cli during startup,
no actual interrupt injection into the subject is necessary. The only purpose that pending interrupts
serve, is that a sleeping subject is woken up by the kernel when an interrupt is newly marked pend-
ing. This makes interrupt handling for subjects much more efficient in this case, since it removes
the need for any subject/kernel transition per interrupt. Analogously, to determine if interrupts
are pending, the subject can inspect the mapped pending interrupts page, which is represented by
the Pending_Interrupt_Present function.

28

Chapter 8

Interrupt Handling

Subjects wishing to process interrupts must setup the environment according to the x86 ISA,
i.e. install a Global Descriptor Table and Interrupt Descriptor Table etc. see Intel SDM Vol.
3A, section 6.12 Exception and Interrupt Handling. Native Ada/SPARK subjects can use the
SK.Interrupt_Tables package as is illustrated by the following snippet from the Example
component:

67 SK.Interrupt_Tables.Initialize
(Stack_Addr => Example_Component.Memory.Interrupt_Stack_Address +

69 Example_Component.Memory.Interrupt_Stack_Size);

Listing 8.1: Initialization of Interrupt Tables

Then the component must provide a handler procedure which should be executed whenever an
interrupt occurs. It must have the link name dispatch_interrupt. For native Ada/SPARK
code, this can be achieved as follows:

-- Exception/Interrupt handler.
30 procedure Dispatch_Exception (Context : SK.Exceptions.Isr_Context_Type)

with
32 Export,

Convention => C,
34 Link_Name => "dispatch_interrupt",

Pre => Musinfo.Instance.Is_Valid;
36

Listing 8.2: Specification of an Interrupt Handler procedure

While the interrupt handler facility takes care of saving and restoring all general purpose
registers, the FPU state is not automatically handled. If the component interrupt handling code
makes use of the FPU, e.g. through optimized code which leverages the wider FPU XMM registers
for faster string copying, the state must be explicitly saved at the beginning of the interrupt handler
and restored at the end using XSAVE/XRSTOR. Otherwise the FPU state of interrupted code
is clobbered. Refer to the Interrupt_Handler package which illustrates how to implement
interrupt handlers that may use the FPU.

Alternatively, one can choose to disallow FPU use in the interrupt handler by using the at-
tribute no_caller_saved_registers in combination with the -mgeneral-regs-only com-
piler flag 1. To apply the attribute to Ada/SPARK subprograms the following snippet can be used:
pragma Machine_Attribute

2 (Entity => $Subprogram_Name,
Attribute_Name => "no_caller_saved_registers");

Listing 8.3: Usage of Machine attribute pragma

1https://gcc.gnu.org/onlinedocs/gcc/x86-Function-Attributes.html

29

Chapter 9

Interface API

This section specifies the interfaces of a Muen component. Where feasible, the example component
interfaces are used to illustrate a specific interface.

A Muen component has potential access to the following interfaces:

• Shared Memory Channels

• Assigned Devices

• Subject Information (sinfo, 9.4)

• Subject Scheduling Information (schedinfo, 9.5)

• Timed Events (9.9)

• Traps (VM Exits)

• Hypercalls

• Subject Monitoring (9.10)

• Subject Lifecycle (9.1, 9.6)

Of course, it depends on the system policy of a concrete system whether a component has
access to a physical device, shared memory channel or similar resources. The sinfo, schedinfo and
timed event interfaces on the other hand are currently unconditionally mapped into the address
space of a component.

The following sections outline each interface in detail. The initial table shows the virtual
address the interface is accessible in the component, potential size and access permissions. After
that, the purpose of the interface is explained before specifying the exact structure.

9.1 Mucontrol.Command.Instance.Command_Page

Type Address
record 16#f_ffff_3000#

9.1.1 Purpose
The command page is written by a control subject and read by any subject that includes the initial-
ization and reset functionality. Aside from the current command, the current epoch value and the
watchdog timer interval are reported. Subjects should read these fields only after synchronization
with the controller subject or if Command is read as CMD_SELF_CTRL.

9.1.2 Structure

30

Table 9.2: The structure of the record Mucontrol.Command.Command_Inter-
face_Type.

Name Type Bytepos First Bit Last Bit

Command Mucontrol.Command.Command_Type 0 0 63
Current command written by the controller subject.

Epoch Interfaces.Unsigned_64 8 0 63
Current epoch written by the controller subject. It is incremented on each reset
of the subject.

Watchdog_Interval Interfaces.Unsigned_64 16 0 63
Current watchdog interval written by the controller subject. To indicate
liveness to the controller, a subject must update the watchdog field within
the given interval. This functionality is disabled if the field is set to
WD_DISABLED.

Reserved Mucontrol.Command.Padding_Type 24 0 32575
Padding of the command interface to the full memory page so every bit of memory
is captured by this type.

9.2 Foo.Sender.Response

Type Address
record 16#1_0000_2000#

9.2.1 Purpose
Example response channel. Used to illustrate a service component.

9.2.2 Structure

Table 9.4: The structure of the record Foo.Message_Type.

Name Type Bytepos First Bit Last Bit

Size SK.Word16 0 0 15
Example modular type field, designating the size of data.

Data Foo.Data_Array 2 0 16383
Example array of bytes.

9.3 Foo.Receiver.Request

Type Address
record 16#1_0000_1000#

9.3.1 Purpose
Example request channel. Used to illustrate a service component.

9.3.2 Structure

Table 9.6: The structure of the record Foo.Message_Type.

Name Type Bytepos First Bit Last Bit

Size SK.Word16 0 0 15
Example modular type field, designating the size of data.

Data Foo.Data_Array 2 0 16383
Example array of bytes.

31

9.4 Musinfo.Instance.Object

Type Address
record 16#e_0000_0000#

9.4.1 Purpose
A subject information record provides means to retrieve information about the execution environ-
ment.

Subject resources are exported as variant records, which are all explicitly padded in order
to guarantee an exact layout and proper initialization of unused space in smaller variants. The
padding size of each variant is determined by the size of the largest variant.

See the musinfo.ads SPARK/Ada specification file for the exact layout of each record variant.

9.4.2 Structure

Table 9.8: The structure of the record Musinfo.Subject_Info_Type.

Name Type Bytepos First Bit Last Bit

Magic Interfaces.Unsigned_64 0 0 63
Sinfo magic, used to check validity of memory region

TSC_Khz Musinfo.TSC_Tick_Rate_Khz_Type 8 0 31
Tick rate of VCPU in Khz

Name Musinfo.Name_Type 12 0 519
Subject name

Resource_Count Interfaces.Unsigned_16 77 0 15
Number of active resource records

Padding Interfaces.Unsigned_8 79 0 7
8-bit padding

Resources Musinfo.Resource_Array 80 0 261119
Array of resource records.

9.5 Musinfo.Instance.Sched_Info

Type Address
record 16#e_0000_8000#

9.5.1 Purpose
The Subject Scheduling Information (schedinfo) mechanism exports coarse grained scheduling in-
formation to subjects. More specifically, the start and end ticks of the current minor frame are
exported.

9.5.2 Structure

Table 9.10: The structure of the record Muschedinfo.Scheduling_Info_Type.

Name Type Bytepos First Bit Last Bit

TSC_Schedule_Start Interfaces.Unsigned_64 0 0 63
Tick value of minor frame start

TSC_Schedule_End Interfaces.Unsigned_64 8 0 63
Tick value of minor frame end

32

9.6 Mucontrol.Status.Instance.Status_Page

Type Address
record 16#f_ffff_2000#

9.6.1 Purpose
The status page is written by a subject that includes the initialization and reset functionality
and read by the control subject. It is used to report the current state of the initialization/reset
process. Subjects may use unreserved state numbers to indicate custom runtime information. As
an example: a subject may set state to 16#1000# after some information has been written to a
shared memory region to indicate availability of said information.

An error is designated by the most significant bit of State. If it is set, then an error condition
is present. By oring STATE_ERROR, the current state value is preserved, which can be helpful for
debugging purposes since it directly designates the failure state.

The watchdog field is used to report liveliness of the subject by writing a new timestamp value
within the WD interval specified on the command page. The diagnostics field can be used to report
additional debug information, e.g. when transitioning to an error state.

9.6.2 Structure

Table 9.12: The structure of the record Mucontrol.Status.Status_Interface_Type.

Name Type Bytepos First Bit Last Bit

State Mucontrol.Status.State_Type 0 0 63
Current state reported by the subject.

Watchdog Interfaces.Unsigned_64 8 0 63
Current watchdog timestamp reported by the subject.

Diagnostics Mucontrol.Status.Diagnostics_Type 16 0 63
Current diagnostics value reported by the subject. Its meaning depends on the
current state.

Reserved Mucontrol.Status.Padding_Type 24 0 32575
Padding of the status interface to the full memory page so every bit of memory is
captured by this type.

9.7 Debuglog.Sink.Message_Channel

Type Address
Debuglog.Sink.CT 16#f_fff0_0000#

9.7.1 Purpose
Shared memory channel to the debug server (dbgserver) subject. Implemented using the writer
provided by the Libmuchannel library. Components may use Libmudebuglog Debuglog.Client.Put*
operations to transfer logging information to the dbgserver.

9.8 Hypercalls
The SK.Hypercall package is used to trigger hypercalls into the Muen SK. Components are only able
to trigger events which are defined in the system policy. The Trigger_Event procedure triggers
a hypercall given by the Number argument. Internally, the vmcall instruction with the event
number in register RAX is used on the x86_64 architecture to initiate a hypercall into the kernel.

9.9 Timed Events

Type Address
record 16#e_0001_0000#

33

9.9.1 Purpose
Timed events allow a subject to trigger a policy defined event at a given CPU tick count.

This is useful to implement synthetic timers using the event injection mechanism of the kernel,
among other things.

9.9.2 Structure

Table 9.15: The structure of the record Mutimedevents.Timed_Event_Inter-
face_Type.

Name Type Bytepos First Bit Last Bit

TSC_Trigger_Value Interfaces.Unsigned_64 0 0 63
CPU tick count to fire the event designated by the event number field.

Event_Nr Mutimedevents.Unsigned_6 8 0 5
Number of event to trigger.

Padding Mutimedevents.Padding_Type 8 6 63
NNo documentation available.

9.10 Monitored Subject Register State

Type Address
record 16#1e_0000#

9.10.1 Purpose
Access to the subject register state of a monitored subject.

9.10.2 Structure

Table 9.17: The structure of the record SK.Subject_State_Type.

Name Type Bytepos First Bit Last Bit

Regs SK.CPU_Registers_Type 0 0 1023
CPU registers CR2, RAX, RBX, RCX, RDX, RDI, RSI, RBP, R08-R15 (64 bits each).

Exit_Reason SK.Word32 128 0 31
Exit reason; Intel SDM Vol. 3C, "24.9.1 Basic VM-Exit Information". This field
encodes the reason for the VM exit.

Intr_State SK.Word32 132 0 31
Interruptibility state; Intel SDM Vol. 3C, "24.4.2 Guest Non-Register State".
The IA-32 architecture includes features that permit certain events to be blocked
for a period of time. This field contains information about such blocking.

Activity_State SK.Word32 136 0 31
Guest activity state; Intel SDM Vol. 3C, "24.4.2 Guest Non-Register State".
This field identifies the logical processor’s activity state.

SYSENTER_CS SK.Word32 140 0 31
Guest IA32_SYSENTER_CS MSR; Intel SDM Vol. 3C, "24.4.1 Guest Register State".

Instruction_Len SK.Word32 144 0 31
Exit instruction length; Intel SDM Vol. 3C, "24.9.4 Information for VM Exits
Due to Instruction Execution". This field receives the length in bytes of the
instruction whose execution led to the VM exit. Also used in the context of
software interrupts or software exceptions.

Exit_Qualification SK.Word64 148 0 63
Exit qualification; Intel SDM Vol. 3C, "24.9.1 Basic VM-Exit Information". This
field contains additional information about the cause of VM exits.

Guest_Phys_Addr SK.Word64 156 0 63
Guest-physical address of exit due to EPT violations and EPT misconfigurations;
Intel SDM Vol. 3C, "24.9.1 Basic VM-Exit Information".

RIP SK.Word64 164 0 63
Guest RIP register; Intel SDM Vol. 3C, "24.4.1 Guest Register State".

RSP SK.Word64 172 0 63
Guest RSP register; Intel SDM Vol. 3C, "24.4.1 Guest Register State".

CR0 SK.Word64 180 0 63
Guest CR0 control register; Intel SDM Vol. 3C, "24.4.1 Guest Register State".

SHADOW_CR0 SK.Word64 188 0 63
CR0 control register read shadow; Intel SDM Vol. 3C, "24.6.6 Guest/Host Masks
and Read Shadows for CR0 and CR4".

CR3 SK.Word64 196 0 63
Guest CR3 control register.

CR4 SK.Word64 204 0 63
Guest CR4 control register; Intel SDM Vol. 3C, "24.4.1 Guest Register State".

34

(continuation)

Name Type Bytepos First Bit Last Bit

SHADOW_CR4 SK.Word64 212 0 63
CR4 control register read shadow; Intel SDM Vol. 3C, "24.6.6 Guest/Host Masks
and Read Shadows for CR0 and CR4".

RFLAGS SK.Word64 220 0 63
Guest RFLAGS register; Intel SDM Vol. 3C, "24.4.1 Guest Register State".

IA32_EFER SK.Word64 228 0 63
Guest IA32_EFER MSR; Intel SDM Vol. 3C, "24.4.1 Guest Register State".

SYSENTER_ESP SK.Word64 236 0 63
Guest IA32_SYSENTER_ESP MSR; Intel SDM Vol. 3C, "24.4.1 Guest Register State".

SYSENTER_EIP SK.Word64 244 0 63
Guest IA32_SYSENTER_EIP MSR; Intel SDM Vol. 3C, "24.4.1 Guest Register State".

Segment_Regs SK.Segment_Registers_Type 252 0 1535
Guest segment registers CS, SS, DS, ES, FS, GS, TR and LDTR. Intel SDM Vol. 3C,
"24.4.1 Guest Register State".

GDTR SK.Segment_Type 444 0 191
Guest global descriptor table register (GDTR).

IDTR SK.Segment_Type 468 0 191
Guest interrupt descriptor table register (IDTR).

Running Standard.Boolean 492 0 0
Flag used by the kernel to track whether the subject is running or sleeping.

Padding SK.Reserved_Type 492 1 7
NNo documentation available.

35

Chapter 10

Verification Conditions Summary
(SPARK 2014)

Muen is very well suited to work with verified SPARK/Ada components. The native vCPU profile
is used to run such components as guest on top of the kernel. The table below shows the verification
results for the example component.

Total Flow CodePeer Provers Justified Unproved

Data Dependencies 43 43 0 0 0 0
Flow Dependencies 33 33 0 0 0 0
Initialization 53 53 0 0 0 0
Non Aliasing 1 1 0 0 0 0
Runtime Checks 141 0 0 140 1 0
Assertions 4 0 0 4 0 0
Functional Contracts 77 0 0 77 0 0
LSP Verification 0 0 0 0 0 0

Totals 354 132 0 221 1 0

36

Chapter 11

Appendix

11.1 VCPU Profiles

1 <?xml version="1.0"?>
<vcpu>

3 <vmx>
<controls>

5 <pin>
<ExternalInterruptExiting>1</ExternalInterruptExiting>

7 <NMIExiting>1</NMIExiting>
<VirtualNMIs>0</VirtualNMIs>

9 <ActivateVMXTimer>1</ActivateVMXTimer>
<ProcessPostedInterrupts>0</ProcessPostedInterrupts>

11 </pin>
<proc>

13 <InterruptWindowExiting>0</InterruptWindowExiting>
<UseTSCOffsetting>0</UseTSCOffsetting>

15 <HLTExiting>0</HLTExiting>
<INVLPGExiting>1</INVLPGExiting>

17 <MWAITExiting>1</MWAITExiting>
<RDPMCExiting>1</RDPMCExiting>

19 <RDTSCExiting>1</RDTSCExiting>
<CR3LoadExiting>1</CR3LoadExiting>

21 <CR3StoreExiting>1</CR3StoreExiting>
<CR8LoadExiting>1</CR8LoadExiting>

23 <CR8StoreExiting>1</CR8StoreExiting>
<UseTPRShadow>0</UseTPRShadow>

25 <NMIWindowExiting>0</NMIWindowExiting>
<MOVDRExiting>1</MOVDRExiting>

27 <UnconditionalIOExiting>0</UnconditionalIOExiting>
<UseIOBitmaps>1</UseIOBitmaps>

29 <MonitorTrapFlag>0</MonitorTrapFlag>
<UseMSRBitmaps>1</UseMSRBitmaps>

31 <MONITORExiting>1</MONITORExiting>
<PAUSEExiting>0</PAUSEExiting>

33 <Activate2ndaryControls>1</Activate2ndaryControls>
</proc>

35 <proc2>
<VirtualAPICAccesses>0</VirtualAPICAccesses>

37 <EnableEPT>0</EnableEPT>
<DescriptorTableExiting>0</DescriptorTableExiting>

39 <EnableRDTSCP>0</EnableRDTSCP>
<Virtualizex2APICMode>0</Virtualizex2APICMode>

41 <EnableVPID>0</EnableVPID>
<WBINVDExiting>1</WBINVDExiting>

43 <UnrestrictedGuest>0</UnrestrictedGuest>
<APICRegisterVirtualization>0</APICRegisterVirtualization>

45 <VirtualInterruptDelivery>0</VirtualInterruptDelivery>
<PAUSELoopExiting>0</PAUSELoopExiting>

47 <RDRANDExiting>0</RDRANDExiting>
<EnableINVPCID>0</EnableINVPCID>

49 <EnableVMFunctions>0</EnableVMFunctions>
</proc2>

51 <entry>

37

<LoadDebugControls>0</LoadDebugControls>
53 <IA32eModeGuest>1</IA32eModeGuest>

<EntryToSMM>0</EntryToSMM>
55 <DeactiveDualMonitorTreatment>0</DeactiveDualMonitorTreatment>

<LoadIA32PERFGLOBALCTRL>0</LoadIA32PERFGLOBALCTRL>
57 <LoadIA32PAT>0</LoadIA32PAT>

<LoadIA32EFER>0</LoadIA32EFER>
59 </entry>

<exit>
61 <SaveDebugControls>0</SaveDebugControls>

<HostAddressspaceSize>1</HostAddressspaceSize>
63 <LoadIA32PERFGLOBALCTRL>0</LoadIA32PERFGLOBALCTRL>

<AckInterruptOnExit>1</AckInterruptOnExit>
65 <SaveIA32PAT>0</SaveIA32PAT>

<LoadIA32PAT>0</LoadIA32PAT>
67 <SaveIA32EFER>0</SaveIA32EFER>

<LoadIA32EFER>0</LoadIA32EFER>
69 <SaveVMXTimerValue>0</SaveVMXTimerValue>

</exit>
71 </controls>

<masks>
73 <exception>

<DivideError>1</DivideError>
75 <Debug>1</Debug>

<Breakpoint>1</Breakpoint>
77 <Overflow>1</Overflow>

<BOUNDRangeExceeded>1</BOUNDRangeExceeded>
79 <InvalidOpcode>1</InvalidOpcode>

<DeviceNotAvailable>1</DeviceNotAvailable>
81 <DoubleFault>1</DoubleFault>

<CoprocessorSegmentOverrun>1</CoprocessorSegmentOverrun>
83 <InvalidTSS>1</InvalidTSS>

<SegmentNotPresent>1</SegmentNotPresent>
85 <StackSegmentFault>1</StackSegmentFault>

<GeneralProtection>1</GeneralProtection>
87 <PageFault>1</PageFault>

<x87FPUFloatingPointError>1</x87FPUFloatingPointError>
89 <AlignmentCheck>1</AlignmentCheck>

<MachineCheck>1</MachineCheck>
91 <SIMDFloatingPointException>1</SIMDFloatingPointException>

</exception>
93 <cr0>

<ProtectionEnable>1</ProtectionEnable>
95 <MonitorCoprocessor>1</MonitorCoprocessor>

<Emulation>1</Emulation>
97 <TaskSwitched>1</TaskSwitched>

<ExtensionType>1</ExtensionType>
99 <NumericError>1</NumericError>

<WriteProtect>1</WriteProtect>
101 <AlignmentMask>1</AlignmentMask>

<!-- WARNING: Do not unmask CR0.NW(29) and CR0.CD(30) -->
103 <!-- as these bits are not handled by VMX -->

<NotWritethrough>1</NotWritethrough>
105 <CacheDisable>1</CacheDisable>

<Paging>1</Paging>
107 </cr0>

<cr4>
109 <Virtual8086>1</Virtual8086>

<ProtectedVirtualInts>1</ProtectedVirtualInts>
111 <TimeStampDisable>1</TimeStampDisable>

<DebuggingExtensions>1</DebuggingExtensions>
113 <PageSizeExtensions>1</PageSizeExtensions>

<PhysicalAddressExtension>1</PhysicalAddressExtension>
115 <MachineCheckEnable>1</MachineCheckEnable>

<PageGlobalEnable>1</PageGlobalEnable>
117 <PerfCounterEnable>1</PerfCounterEnable>

<OSSupportFXSAVE>1</OSSupportFXSAVE>
119 <OSSupportSIMDExceptions>1</OSSupportSIMDExceptions>

<UMInstructionPrevention>1</UMInstructionPrevention>
121 <VMXEnable>1</VMXEnable>

<SMXEnable>1</SMXEnable>
123 <FSGSBASEEnable>1</FSGSBASEEnable>

<PCIDEnable>1</PCIDEnable>

38

125 <XSAVEEnable>1</XSAVEEnable>
<SMEPEnable>1</SMEPEnable>

127 <SMAPEnable>1</SMAPEnable>
<ProtectionKeyEnable>1</ProtectionKeyEnable>

129 </cr4>
</masks>

131 </vmx>
<msrs/>

133 <registers>
<gpr>

135 <rip>16#0020_0000#</rip>
<rsp>16#3000#</rsp>

137 <rax>16#0000#</rax>
<rbx>16#0000#</rbx>

139 <rcx>16#0000#</rcx>
<rdx>16#0000#</rdx>

141 <rdi>16#0000#</rdi>
<rsi>16#0000#</rsi>

143 <rbp>16#0000#</rbp>
<r08>16#0000#</r08>

145 <r09>16#0000#</r09>
<r10>16#0000#</r10>

147 <r11>16#0000#</r11>
<r12>16#0000#</r12>

149 <r13>16#0000#</r13>
<r14>16#0000#</r14>

151 <r15>16#0000#</r15>
</gpr>

153 <cr0>
<ProtectionEnable>1</ProtectionEnable>

155 <MonitorCoprocessor>1</MonitorCoprocessor>
<Emulation>0</Emulation>

157 <TaskSwitched>0</TaskSwitched>
<ExtensionType>1</ExtensionType>

159 <NumericError>1</NumericError>
<WriteProtect>1</WriteProtect>

161 <AlignmentMask>0</AlignmentMask>
<NotWritethrough>0</NotWritethrough>

163 <CacheDisable>0</CacheDisable>
<Paging>1</Paging>

165 </cr0>
<cr0Shadow>

167 <ProtectionEnable>1</ProtectionEnable>
<MonitorCoprocessor>1</MonitorCoprocessor>

169 <Emulation>0</Emulation>
<TaskSwitched>0</TaskSwitched>

171 <ExtensionType>1</ExtensionType>
<NumericError>1</NumericError>

173 <WriteProtect>1</WriteProtect>
<AlignmentMask>0</AlignmentMask>

175 <NotWritethrough>0</NotWritethrough>
<CacheDisable>0</CacheDisable>

177 <Paging>1</Paging>
</cr0Shadow>

179 <cr4>
<Virtual8086>0</Virtual8086>

181 <ProtectedVirtualInts>0</ProtectedVirtualInts>
<TimeStampDisable>0</TimeStampDisable>

183 <DebuggingExtensions>0</DebuggingExtensions>
<PageSizeExtensions>0</PageSizeExtensions>

185 <PhysicalAddressExtension>1</PhysicalAddressExtension>
<MachineCheckEnable>1</MachineCheckEnable>

187 <PageGlobalEnable>0</PageGlobalEnable>
<PerfCounterEnable>0</PerfCounterEnable>

189 <OSSupportFXSAVE>1</OSSupportFXSAVE>
<OSSupportSIMDExceptions>0</OSSupportSIMDExceptions>

191 <UMInstructionPrevention>0</UMInstructionPrevention>
<VMXEnable>1</VMXEnable>

193 <SMXEnable>0</SMXEnable>
<FSGSBASEEnable>0</FSGSBASEEnable>

195 <PCIDEnable>0</PCIDEnable>
<XSAVEEnable>0</XSAVEEnable>

197 <SMEPEnable>0</SMEPEnable>

39

<SMAPEnable>0</SMAPEnable>
199 <ProtectionKeyEnable>0</ProtectionKeyEnable>

</cr4>
201 <cr4Shadow>

<Virtual8086>0</Virtual8086>
203 <ProtectedVirtualInts>0</ProtectedVirtualInts>

<TimeStampDisable>0</TimeStampDisable>
205 <DebuggingExtensions>0</DebuggingExtensions>

<PageSizeExtensions>0</PageSizeExtensions>
207 <PhysicalAddressExtension>1</PhysicalAddressExtension>

<MachineCheckEnable>1</MachineCheckEnable>
209 <PageGlobalEnable>0</PageGlobalEnable>

<PerfCounterEnable>0</PerfCounterEnable>
211 <OSSupportFXSAVE>1</OSSupportFXSAVE>

<OSSupportSIMDExceptions>0</OSSupportSIMDExceptions>
213 <UMInstructionPrevention>0</UMInstructionPrevention>

<VMXEnable>1</VMXEnable>
215 <SMXEnable>0</SMXEnable>

<FSGSBASEEnable>0</FSGSBASEEnable>
217 <PCIDEnable>0</PCIDEnable>

<XSAVEEnable>0</XSAVEEnable>
219 <SMEPEnable>0</SMEPEnable>

<SMAPEnable>0</SMAPEnable>
221 <ProtectionKeyEnable>0</ProtectionKeyEnable>

</cr4Shadow>
223 <segments>

<cs access="16#a09b#" base="16#0000#" limit="16#ffff_ffff#" selector="16#0008#"/>
225 <ds access="16#c093#" base="16#0000#" limit="16#ffff_ffff#" selector="16#0010#"/>

<es access="16#c093#" base="16#0000#" limit="16#ffff_ffff#" selector="16#0010#"/>
227 <fs access="16#0001_0000#" base="16#0000#" limit="16#0000#" selector="16#0000#"/>

<gs access="16#0001_0000#" base="16#0000#" limit="16#0000#" selector="16#0000#"/>
229 <ss access="16#c093#" base="16#0000#" limit="16#ffff_ffff#" selector="16#0010#"/>

<tr access="16#008b#" base="16#0000#" limit="16#ffff#" selector="16#0018#"/>
231 <ldtr access="16#0001_0000#" base="16#0000#" limit="16#0000#" selector="16#0000#"/>

</segments>
233 </registers>

</vcpu>

Listing 11.1: Native vCPU

<?xml version="1.0"?>
2 <vcpu>

<vmx>
4 <controls>

<pin>
6 <ExternalInterruptExiting>1</ExternalInterruptExiting>

<NMIExiting>1</NMIExiting>
8 <VirtualNMIs>0</VirtualNMIs>

<ActivateVMXTimer>1</ActivateVMXTimer>
10 <ProcessPostedInterrupts>0</ProcessPostedInterrupts>

</pin>
12 <proc>

<InterruptWindowExiting>0</InterruptWindowExiting>
14 <UseTSCOffsetting>0</UseTSCOffsetting>

<HLTExiting>0</HLTExiting>
16 <INVLPGExiting>1</INVLPGExiting>

<MWAITExiting>1</MWAITExiting>
18 <RDPMCExiting>1</RDPMCExiting>

<RDTSCExiting>1</RDTSCExiting>
20 <CR3LoadExiting>0</CR3LoadExiting>

<CR3StoreExiting>0</CR3StoreExiting>
22 <CR8LoadExiting>1</CR8LoadExiting>

<CR8StoreExiting>1</CR8StoreExiting>
24 <UseTPRShadow>0</UseTPRShadow>

<NMIWindowExiting>0</NMIWindowExiting>
26 <MOVDRExiting>1</MOVDRExiting>

<UnconditionalIOExiting>0</UnconditionalIOExiting>
28 <UseIOBitmaps>1</UseIOBitmaps>

<MonitorTrapFlag>0</MonitorTrapFlag>
30 <UseMSRBitmaps>1</UseMSRBitmaps>

<MONITORExiting>1</MONITORExiting>
32 <PAUSEExiting>0</PAUSEExiting>

<Activate2ndaryControls>1</Activate2ndaryControls>

40

34 </proc>
<proc2>

36 <VirtualAPICAccesses>0</VirtualAPICAccesses>
<EnableEPT>1</EnableEPT>

38 <DescriptorTableExiting>0</DescriptorTableExiting>
<EnableRDTSCP>0</EnableRDTSCP>

40 <Virtualizex2APICMode>0</Virtualizex2APICMode>
<EnableVPID>0</EnableVPID>

42 <WBINVDExiting>1</WBINVDExiting>
<UnrestrictedGuest>1</UnrestrictedGuest>

44 <APICRegisterVirtualization>0</APICRegisterVirtualization>
<VirtualInterruptDelivery>0</VirtualInterruptDelivery>

46 <PAUSELoopExiting>0</PAUSELoopExiting>
<RDRANDExiting>0</RDRANDExiting>

48 <EnableINVPCID>0</EnableINVPCID>
<EnableVMFunctions>0</EnableVMFunctions>

50 </proc2>
<entry>

52 <LoadDebugControls>0</LoadDebugControls>
<IA32eModeGuest>0</IA32eModeGuest>

54 <EntryToSMM>0</EntryToSMM>
<DeactiveDualMonitorTreatment>0</DeactiveDualMonitorTreatment>

56 <LoadIA32PERFGLOBALCTRL>0</LoadIA32PERFGLOBALCTRL>
<LoadIA32PAT>0</LoadIA32PAT>

58 <LoadIA32EFER>1</LoadIA32EFER>
</entry>

60 <exit>
<SaveDebugControls>0</SaveDebugControls>

62 <HostAddressspaceSize>1</HostAddressspaceSize>
<LoadIA32PERFGLOBALCTRL>0</LoadIA32PERFGLOBALCTRL>

64 <AckInterruptOnExit>1</AckInterruptOnExit>
<SaveIA32PAT>0</SaveIA32PAT>

66 <LoadIA32PAT>0</LoadIA32PAT>
<SaveIA32EFER>1</SaveIA32EFER>

68 <LoadIA32EFER>1</LoadIA32EFER>
<SaveVMXTimerValue>0</SaveVMXTimerValue>

70 </exit>
</controls>

72 <masks>
<exception>

74 <DivideError>0</DivideError>
<Debug>0</Debug>

76 <Breakpoint>0</Breakpoint>
<Overflow>0</Overflow>

78 <BOUNDRangeExceeded>0</BOUNDRangeExceeded>
<InvalidOpcode>0</InvalidOpcode>

80 <DeviceNotAvailable>0</DeviceNotAvailable>
<DoubleFault>0</DoubleFault>

82 <CoprocessorSegmentOverrun>0</CoprocessorSegmentOverrun>
<InvalidTSS>0</InvalidTSS>

84 <SegmentNotPresent>0</SegmentNotPresent>
<StackSegmentFault>0</StackSegmentFault>

86 <GeneralProtection>0</GeneralProtection>
<PageFault>0</PageFault>

88 <x87FPUFloatingPointError>0</x87FPUFloatingPointError>
<AlignmentCheck>0</AlignmentCheck>

90 <MachineCheck>1</MachineCheck>
<SIMDFloatingPointException>0</SIMDFloatingPointException>

92 </exception>
<cr0>

94 <ProtectionEnable>0</ProtectionEnable>
<MonitorCoprocessor>0</MonitorCoprocessor>

96 <Emulation>0</Emulation>
<TaskSwitched>0</TaskSwitched>

98 <!-- CR0.ET(4) is ignored on all supported CPUs -->
<ExtensionType>0</ExtensionType>

100 <NumericError>1</NumericError>
<WriteProtect>0</WriteProtect>

102 <AlignmentMask>0</AlignmentMask>
<!-- WARNING: Do not unmask CR0.NW(29) and CR0.CD(30) -->

104 <!-- as these bits are not handled by VMX -->
<NotWritethrough>1</NotWritethrough>

106 <CacheDisable>1</CacheDisable>

41

<Paging>0</Paging>
108 </cr0>

<cr4>
110 <Virtual8086>0</Virtual8086>

<ProtectedVirtualInts>0</ProtectedVirtualInts>
112 <TimeStampDisable>0</TimeStampDisable>

<DebuggingExtensions>0</DebuggingExtensions>
114 <PageSizeExtensions>0</PageSizeExtensions>

<PhysicalAddressExtension>0</PhysicalAddressExtension>
116 <MachineCheckEnable>1</MachineCheckEnable>

<PageGlobalEnable>0</PageGlobalEnable>
118 <PerfCounterEnable>0</PerfCounterEnable>

<OSSupportFXSAVE>0</OSSupportFXSAVE>
120 <OSSupportSIMDExceptions>0</OSSupportSIMDExceptions>

<UMInstructionPrevention>0</UMInstructionPrevention>
122 <VMXEnable>1</VMXEnable>

<SMXEnable>0</SMXEnable>
124 <FSGSBASEEnable>0</FSGSBASEEnable>

<PCIDEnable>0</PCIDEnable>
126 <XSAVEEnable>0</XSAVEEnable>

<SMEPEnable>0</SMEPEnable>
128 <SMAPEnable>0</SMAPEnable>

<ProtectionKeyEnable>1</ProtectionKeyEnable>
130 </cr4>

</masks>
132 </vmx>

<msrs>
134 <!-- IA32_SYSENTER_CS/ESP/EIP -->

<msr start="16#0174#" end="16#0176#" mode="rw"/>
136 <!-- IA32_EFER/STAR/LSTAR/CSTAR/FMASK -->

<msr start="16#c000_0080#" end="16#c000_0084#" mode="rw"/>
138 <!-- IA32_FS_BASE/GS_BASE/KERNEL_GS_BASE -->

<msr start="16#c000_0100#" end="16#c000_0102#" mode="rw"/>
140 </msrs>

<registers>
142 <gpr>

<rip>16#0040_0000#</rip>
144 <rsp>16#0000#</rsp>

<rax>16#0000#</rax>
146 <rbx>16#0000#</rbx>

<rcx>16#0000#</rcx>
148 <rdx>16#0000#</rdx>

<rdi>16#0000#</rdi>
150 <rsi>16#0000#</rsi>

<rbp>16#0000#</rbp>
152 <r08>16#0000#</r08>

<r09>16#0000#</r09>
154 <r10>16#0000#</r10>

<r11>16#0000#</r11>
156 <r12>16#0000#</r12>

<r13>16#0000#</r13>
158 <r14>16#0000#</r14>

<r15>16#0000#</r15>
160 </gpr>

<cr0>
162 <ProtectionEnable>1</ProtectionEnable>

<MonitorCoprocessor>0</MonitorCoprocessor>
164 <Emulation>1</Emulation>

<TaskSwitched>0</TaskSwitched>
166 <ExtensionType>1</ExtensionType>

<NumericError>1</NumericError>
168 <WriteProtect>0</WriteProtect>

<AlignmentMask>0</AlignmentMask>
170 <NotWritethrough>0</NotWritethrough>

<CacheDisable>0</CacheDisable>
172 <Paging>0</Paging>

</cr0>
174 <cr0Shadow>

<ProtectionEnable>1</ProtectionEnable>
176 <MonitorCoprocessor>0</MonitorCoprocessor>

<Emulation>0</Emulation>
178 <TaskSwitched>0</TaskSwitched>

<ExtensionType>0</ExtensionType>

42

180 <NumericError>1</NumericError>
<WriteProtect>0</WriteProtect>

182 <AlignmentMask>0</AlignmentMask>
<NotWritethrough>0</NotWritethrough>

184 <CacheDisable>0</CacheDisable>
<Paging>0</Paging>

186 </cr0Shadow>
<cr4>

188 <Virtual8086>0</Virtual8086>
<ProtectedVirtualInts>0</ProtectedVirtualInts>

190 <TimeStampDisable>0</TimeStampDisable>
<DebuggingExtensions>0</DebuggingExtensions>

192 <PageSizeExtensions>0</PageSizeExtensions>
<PhysicalAddressExtension>1</PhysicalAddressExtension>

194 <MachineCheckEnable>1</MachineCheckEnable>
<PageGlobalEnable>0</PageGlobalEnable>

196 <PerfCounterEnable>0</PerfCounterEnable>
<OSSupportFXSAVE>0</OSSupportFXSAVE>

198 <OSSupportSIMDExceptions>0</OSSupportSIMDExceptions>
<UMInstructionPrevention>0</UMInstructionPrevention>

200 <VMXEnable>1</VMXEnable>
<SMXEnable>0</SMXEnable>

202 <FSGSBASEEnable>0</FSGSBASEEnable>
<PCIDEnable>0</PCIDEnable>

204 <XSAVEEnable>0</XSAVEEnable>
<SMEPEnable>0</SMEPEnable>

206 <SMAPEnable>0</SMAPEnable>
<ProtectionKeyEnable>0</ProtectionKeyEnable>

208 </cr4>
<cr4Shadow>

210 <Virtual8086>0</Virtual8086>
<ProtectedVirtualInts>0</ProtectedVirtualInts>

212 <TimeStampDisable>0</TimeStampDisable>
<DebuggingExtensions>0</DebuggingExtensions>

214 <PageSizeExtensions>0</PageSizeExtensions>
<PhysicalAddressExtension>0</PhysicalAddressExtension>

216 <MachineCheckEnable>0</MachineCheckEnable>
<PageGlobalEnable>0</PageGlobalEnable>

218 <PerfCounterEnable>0</PerfCounterEnable>
<OSSupportFXSAVE>0</OSSupportFXSAVE>

220 <OSSupportSIMDExceptions>0</OSSupportSIMDExceptions>
<UMInstructionPrevention>0</UMInstructionPrevention>

222 <VMXEnable>0</VMXEnable>
<SMXEnable>0</SMXEnable>

224 <FSGSBASEEnable>0</FSGSBASEEnable>
<PCIDEnable>0</PCIDEnable>

226 <XSAVEEnable>0</XSAVEEnable>
<SMEPEnable>0</SMEPEnable>

228 <SMAPEnable>0</SMAPEnable>
<ProtectionKeyEnable>0</ProtectionKeyEnable>

230 </cr4Shadow>
<segments>

232 <cs access="16#c09b#" base="16#0000#" limit="16#ffff_ffff#" selector="16#0008#"/>
<ds access="16#c093#" base="16#0000#" limit="16#ffff_ffff#" selector="16#0010#"/>

234 <es access="16#c093#" base="16#0000#" limit="16#ffff_ffff#" selector="16#0010#"/>
<fs access="16#0001_0000#" base="16#0000#" limit="16#0000#" selector="16#0000#"/>

236 <gs access="16#0001_0000#" base="16#0000#" limit="16#0000#" selector="16#0000#"/>
<ss access="16#c093#" base="16#0000#" limit="16#ffff_ffff#" selector="16#0010#"/>

238 <tr access="16#008b#" base="16#0000#" limit="16#ffff#" selector="16#0018#"/>
<ldtr access="16#0001_0000#" base="16#0000#" limit="16#0000#" selector="16#0000#"/>

240 </segments>
</registers>

242 </vcpu>

Listing 11.2: VM vCPU

43

Chapter 12

Bibliography

[1] Adrian-Ken Rueegsegger and Reto Buerki. Muen System Specification.

44

	Introduction
	Components
	Subjects
	Libraries

	Resource Discovery
	CSPECS Mechanism
	Subject Information (sinfo) Mechanism
	Operating System specific Methods

	VCPU Profiles
	Configuration Parameters
	Subject Monitoring
	Register State
	Timed Events
	Interrupts
	Loader
	By Example

	Subject Lifecycle
	Policy / Config / Compilation
	Command and Status Interface
	Usage
	Operation

	Subject Yield/Sleep
	Yield
	Sleep
	Configuration
	Use case: Event-driven component

	Interrupt Handling
	Interface API
	Mucontrol.Command.Instance.Command_Page
	Foo.Sender.Response
	Foo.Receiver.Request
	Musinfo.Instance.Object
	Musinfo.Instance.Sched_Info
	Mucontrol.Status.Instance.Status_Page
	Debuglog.Sink.Message_Channel
	Hypercalls
	Timed Events
	Monitored Subject Register State

	Verification Conditions Summary (SPARK 2014)
	Appendix
	VCPU Profiles

	Bibliography

