
Muen Separation Kernel

Adrian-Ken Rueegsegger, Reto Buerki

v0.7.2, April 9, 2024

Copyright © 2024 codelabs GmbH
Copyright © 2024 secunet Security Networks AG

Further publications, reprints, duplications or recordings - no matter in which form, of the entire
document or parts of it - are only permissible with the prior consent of codelabs GmbH or secunet
Security Networks AG.

1

Contents

1 Introduction 4
1.1 Document Structure . 4
1.2 Source Code . 5

2 Overview 7
2.1 System Architecture . 7
2.2 Policy . 8
2.3 Configuration . 8
2.4 Kernel Operation . 9
2.5 Separation of Subjects . 9
2.6 Scheduling . 10
2.7 Interrupts . 12
2.8 Exceptions . 13
2.9 Crash Audit . 13
2.10 Subject Interaction . 14
2.11 Avoidance of Covert Channels . 15

3 Data Model 16
3.1 Multicore Support . 16
3.2 CPU-local Data . 17
3.3 Local Subject-related Data . 17
3.4 Global Shared Data . 17

4 Kernel State 18
4.1 Per-CPU data . 18
4.2 Skp.IOMMU.IOMMUs . 18
4.3 SK.IO_Apic.Register_Select . 19
4.4 SK.IO_Apic.Window . 19
4.5 SK.Crash_Audit.Instance . 19
4.6 SK.Tau0_Interface.New_Major . 20
4.7 SK.FPU.Subject_FPU_States . 20
4.8 SK.Scheduling_Info.Sched_Info . 20
4.9 SK.Subjects.Descriptors . 21
4.10 SK.Subjects_Interrupts.Pending_Interrupts . 22
4.11 SK.Subjects_MSR_Store.MSR_Storage . 22
4.12 SK.Timed_Events.Subject_Events . 23
4.13 SK.VMX.VMCS . 23

5 CPU-Global State 24
5.1 SK.Crash_Audit.Global_Next_Slot . 24
5.2 SK.IO_Apic.Global_IO_APIC_Lock . 24
5.3 SK.Subjects_Events.Global_Pending_Events . 24
5.4 SK.Scheduler.Global_Current_Major_Start_Cycles 25
5.5 SK.Scheduler.Global_Current_Major_Frame_ID 25
5.6 SK.Scheduler.Global_Group_Activity_Indicator 25
5.7 SK.MP.Global_Minor_Frame_Barriers . 25
5.8 SK.MP.Global_All_Barrier . 25

2

6 Devices 27
6.1 Interrupt Controllers . 27
6.2 IOMMU . 27
6.3 Timer . 27
6.4 Diagnostics . 28

7 Implementation 29
7.1 Kernel Entry Points . 29
7.2 Initialization . 29
7.3 VMX Exit Handling . 31
7.4 Scheduling Partition Management . 34
7.5 Subject State Management . 36
7.6 Crash Audit . 38
7.7 VMCS Management . 39
7.8 Packages . 41

8 Verification 47
8.1 SPARK . 47
8.2 Verification Conditions Summary (SPARK 2014) 47

9 Appendix 49
9.1 Crash Audit data structure . 49

10 Bibliography 59

List of Figures

2.1 Execution of VMs and native subjects . 7
2.2 Complexity reduction of Muen SK . 8
2.3 Kernel control-flow . 9
2.4 Relationship between scheduling entities . 10
2.5 Example major frame . 11
2.6 Example scheduling plan . 11

8.1 Toolchain for the verification of SPARK programs. 47

3

Chapter 1

Introduction

This document describes the Muen Separation Kernel (SK). It is intended to provide information
and ultimately give a better understanding of the SK design and its implementation. Additionally
a short overview of related topics such as system policy and integration is given. References
for further reading are included as well. The Muen System Specification [3] as well as the Muen
Component Specification [2] in particular should be viewed as the main complementary documents
to this one. All three documents taken together make up the main documentation of the entire
Muen project.

The reader is expected to be familiar with concepts related to system-level software such as
operating systems/microkernels, component-based systems as well as software development prin-
ciples.

Large parts of this document are generated based on annotations in the SK source code1.

1.1 Document Structure
First, a high-level overview of the architecture, design and basic operation of the Muen Separation
Kernel is provided in chapter 2. The motivation for the architecture and the approach how kernel
functionality is minimized and complexity is avoided are described. Next, the concepts of the
system policy and configuration are quickly introduced. An overview of the operation of the kernel
and its main functional building blocks are presented in sections 2.4 through 2.9. Chapter 2 closes
with a discussion how subjects can interact and how covert channels can be avoided or limited in
bandwidth on Muen systems.

Chapter 3 describes how multicore support is realized by Muen and how kernel data is struc-
tured. This provides the reader with documentation on what different degrees of data sharing
between CPU cores there are, what levels of coupling through data structures exist and how the
data is initialized.

The following chapters 4 and 5 document all kernel data structures grouped by the categories
introduced in the previous chapter. The purpose of each data structure is given as well as its type
and layout.

Next, the kernel’s direct use of devices is described. Aside from the interrupt controller and
IOMMU, Muen’s use of the VMX-preemption timer is presented as well as how diagnostics infor-
mation is provided by the debug build of the kernel.

Chapter 7 describes the kernel implementation in detail. Aside from kernel initialization and
exit handling the crash audit, subject state and VMCS management are documented. Then an
enumeration of all Ada packages that make up the kernel code base is given.

A quick introduction of SPARK and the verification process as well as tools is given in chapter
8. Furthermore, a summary of verification conditions of the SPARK proofs for the Muen SK 2 is
presented.

1Version: v1.1.0
2based on the same version this document was generated from

4

1.2 Source Code
This section gives a short overview of the Muen source code. It describes where and how to
download it and presents a brief description of the source tree layout.

1.2.1 Obtaining the Source Code
The source code of the Muen project is hosted in the official Git repository which is located at
https://git.codelabs.ch/muen.git.

To obtain the source, clone the Git repository as follows:

git clone --recursive https://git.codelabs.ch/muen.git

1.2.2 Source-Tree Layout
The top-level directory of the Muen source tree contains a README file which gives a good
overview of the key aspects of the Muen project. Furthermore it gives practical advice on how to
get started including references to further resources.

In the following, a brief description of each sub-directory and what it contains is given:

common/
Source code packages shared between the kernel and components.

components/
Implementations of various components and libraries, such as device drivers (e.g. AHCI,
PS/2) or Subject Monitor for Muen Linux. These are utilized to realize different Muen
Systems and can be reused in any component-based system running on top of Muen.

config/
Compiler and Proof tool configuration used when building the Muen tools, Components as
well as the kernel.

contrib/
Third-party software required for building some tools and components.

deploy/
This directory contains build system facilities to enable the simple deployment of Muen
system images to supported hardware platforms. Refer to the README for further details.

doc/
Contains documents describing different elements of the Muen project. The Master Thesis
An x86/64 Separation Kernel for High Assurance originally written in 2013 is also located in
this directory.

emulate/
This directory contains build system facilities to enable the emulation of Muen systems under
nested QEMU/KVM. Refer to the README for further details.

kernel/
This directory contains the implementation of the Muen Separation Kernel.

pack/
This directory contains build system facilities for the assembly of bootable Muen system
images.

policy/
Provides various Muen system policies such as the demo system, as well as specifications for
a selection of hardware platforms.

projects/
Support utilities used by the Muen build process are located in this sub-directory.

5

https://git.codelabs.ch/muen.git

rts/
Zero-Footprint Ada runtime used by the Muen SK as well as native Ada/SPARK component
implementations.

tools/
Contains the Muen toolchain used for building and assembling a Muen system image. For
further details, refer to [3].

6

Chapter 2

Overview

This section gives an overview of the design and architecture of the Muen Separation Kernel.

2.1 System Architecture
Muen is an open-source Separation Kernel implemented in the SPARK programming language,
which has been shown to be free from certain bug classes through the application of formal methods.
It leverages the virtualization extensions provided by the hardware platform to securely isolate
subjects and devices.

non-root mode
root mode

Muen Separation Kernel

Linux VMWindows VM
Native
Subject

Guest Kernel Guest Kernel

Figure 2.1: Execution of VMs and native subjects on top of the Muen SK. The kernel is the only
software running in the privileged Intel VT-x root mode while all Subjects execute in unprivileged
non-root mode.

The Muen SK is the only part of the system running in VMX root mode: all subjects, be
it fully-fledged VMs or small, native subjects, execute with lower privileges in non-root mode.
By design, no code is executed in user-space (ring 3) of VMX root mode. This enables Muen
to completely avoid code for handling Syscalls/Ring-3-to-Ring-0 transitions, significantly reducing
the code size and complexity.

Deterministic runtime behavior of the SK is achieved by avoiding long-running code paths and
preemption of kernel code. During kernel execution, external interrupts are disabled and the proof
of absence of runtime errors assures that no exceptions occur. Furthermore, the absence of any
kind of dynamic resource management and the fixed, cyclic scheduler contribute to the highly
deterministic runtime behavior of the kernel.

The sole purpose of the kernel is to provide temporal and spatial isolation for subjects running
on top of it. By design, all non-essential functionality has been removed from the kernel. This
results in a significant reduction of code size and complexity. Figure 2.2 illustrates parts that
usually make up an Operating System and the subset that is implemented by the Muen SK.

Since resource allocation is static, there is no need for resource management at runtime. Addi-
tionally, Muen does not provide a complex hypercall API. Subjects can only trigger events, such
as sending a signal to a specific subject, that have been defined in their entirety in the policy
at integration time. Virtualization events such as traps are not handled by the SK but instead
reflected to components as specified in the policy.

Static configuration also frees the kernel from any policy decisions: the runtime behavior is

7

Init Signaling Scheduler VT-x
VT-d

Caps/
Perms

Page
Tables

Message
Passing

Schedule
Planning

Memory
Allocator

Device
Allocator

Device
Drivers

User
Interface

File
System

VM
Monitor

Posix
Interface

Figure 2.2: Complexity reduction of Muen SK compared to a classical, monolithical Kernel.

precisely specified in the system policy which, in turn, enables detailed analysis of the system prior
to its execution.

Further functionality must be implemented in unprivileged subjects. Complex, abstracted IPC
mechanisms, which are usually provided by classical microkernels, are not part of the Muen kernel.

In addition to the minimization of kernel functionality, care is also taken to ensure that the
implementation is made as comprehensible and understandable as possible. In particular, the use
of complicated algorithms or complex language constructs is deliberately avoided.

2.2 Policy
This section gives a short description of the Muen system policy and how it relates to the kernel. A
detailed description of the Muen System Specification can be found in the corresponding document
[3].

In the context of Muen, integration of a system is defined as the process of assembling a runnable
system image out of constituent parts, such as compiled kernel and subject code, generated data
structures (e.g. page tables), etc following a system description.

The configuration of a Muen system takes place during the integration by means of a policy
in XML format. The policy includes a declaration of all existing hardware resources of the target
platform, the subjects to be executed with their assigned resources as well as the scheduling plan.
The plan specifies exactly when a scheduling partition should run on which CPU and for how long.

Information flows between subjects are defined in their entirety in the policy. So-called memory
channels declare directional writer/reader relationships and assignment of physical memory or
devices for shared usage is also possible. Unassigned resources are not available during runtime.

From the information specified in the policy, the Muen toolchain generates the actual con-
figuration of the hardware, which is merely applied by the kernel at runtime. For example, the
page tables for a subject are generated, which the kernel applies accordingly, when the associated
subject is executed. The SK has no knowledge of the exact layout of the page tables and which
memory areas are accessible to a subject. In fact, these data structures are not even mapped into
the address space of the kernel since they remain static and do not need to be accessed.

As part of the integration, numerous validations are carried out. Each check ensures a specific
functional or security-relevant system property, such as for example accessibility of sensitive system
memory to subjects. These properties can, where desirable, be manually audited or visualized.

2.3 Configuration
Relevant aspects of the system are transformed by the mugenspec tool to data structures in the
form of SPARK source files, which are represented by the Ada package hierarchy Skp. These
include for example IRQ routing information, scheduling plans, initial subject state etc, see section
7.8.49 for detailed documentation.

Whenever the kernel needs to perform a policy decision, it simply consults the corresponding
table, which contains the necessary information. For example when a hardware interrupt is raised,
the kernel performs a lookup in the Skp.Interrupts.Vector_Routing array using the IRQ
number as index. The entry specifies which subject the recipient of the interrupt is, as well as the
vector number to inject. With this information, the kernel can mark the corresponding interrupt
as pending and resume regular operation.

8

More information regarding the policy processing by the Muen toolchain can be found in the
Muen System Specification document [3].

2.4 Kernel Operation
The Muen kernel has two main entry points: system initialization and the scheduler loop. Upon
start of a system the kernel puts the CPU in the appropriate state by setting up the MMU and
transitioning into VMX root-mode. After setting up the interrupt controllers, IOMMU and when
all active CPU cores are ready, the execution of the initial subject is started by means of a VM-
Entry. Detailed description of kernel initialization is given in section 7.2.

On VM-Exit the hardware invokes the scheduler subprogram since it has been set as the kernel
entry point in the subject VMCS data structure. The kernel synchronizes data from the VMCS to
the subject state data structure in memory. After handling the exit condition, the next subject is
prepared by synchronizing the VMCS with values from the subject state and execution is started by
performing a VM-entry. The kernel control-flow is illustrated by figure 2.3. A detailed description
of the implementation is given in section 7.3.

Handle_Vmx_ExitInitialize

Scheduling Plan

Subject

VMX root VMX non-root

VM enter

VM enter

VM exit

Figure 2.3: Kernel control-flow

2.5 Separation of Subjects
The kernel implements the communication policy by separating subjects spatially and temporally.
It does not have to perform any policy decisions because it is static and does not change. Thus,
the Muen SK can be seen as a policy enforcement engine.

Spatial separation of main memory is enforced through the use of hardware memory protec-
tion (MMU and IOMMU). The corresponding page tables are made active whenever a subject is
executed. As a consequence, subjects have only access to the memory resources assigned to them.
DMA-capable devices are restricted to the memory allowed by the system policy. This is enforced
by the IOMMU via DMA Remapping (DMAR).

Architectural state, such as processor and FPU registers, is saved to an associated memory
region when subjects change. The state of the subject to be executed is completely restored. An
in-depth description of the implementation is given in section 7.5.

Access rights to model-specific registers (MSRs) as well as I/O ports of devices are determined
via MSR and I/O bitmaps, see Intel SDM Vol. 3C, "24.6 VM-Execution Control Fields" [7].
Unauthorized access is intercepted by the processor and the execution of the subject is interrupted.
The incident is handled according to the exit handling of the subject specified in the policy by
looking up the appropriate action in the subject’s VM-Exit event table.

Device interrupts are also protected by hardware: by using interrupt remapping, devices can
only generate the interrupt vectors assigned in the policy.

Temporal isolation of subjects is implemented by the scheduler, described in the following
section 2.6.

9

2.6 Scheduling
This section presents the design and operation of the Muen kernel scheduler and the chosen schedul-
ing algorithm.

Scheduling is defined as the process of selecting a subject and giving it access to its assigned
system resources for a certain amount of time. The main resource is processor time, which enables
a subject to execute instructions in order to perform its task.

A key objective of the scheduler is to provide temporal isolation by preventing any interference
between subjects. To achieve this, scheduling is done in a fixed, cyclic and preemptive manner
according to a plan specified in the system policy.

The scheduler is organized in a hierarchical fashion: at the first level, there are scheduling
partitions. These consist of one or more scheduling groups. Subjects which can handover execution
amongst each other via the event mechanism form a scheduling group. The scheduling plan specified
in the policy, schedules scheduling partitions consisting of scheduling groups consisting of subjects.

Scheduling Plan

Scheduling Partition [non-cooperative scheduling]

Scheduling Group [cooperative scheduling]

Subject

n

m

1

n

1

n

Figure 2.4: Relationship between scheduling entities

Within a scheduling partition, all scheduling groups are scheduled round robin with preemption
and the opportunity to yield and/or sleep. A prioritization is not implemented on purpose to
avoid any starvation issues. The reason is that prioritization with starvation protection cannot
be implemented with low complexity. For a detailed description of the operation of scheduling
partitions, see 2.6.1.

Scheduling information is declared in a scheduling plan. Such a plan is part of the policy and
specifies which subjects belong to which scheduling group and which scheduling groups belong to
which scheduling partition. A subject can only be part of one group and a group can only be
part of exactly one partition. Furthermore, the scheduling plan specifies in what order scheduling
partitions are executed on which CPU core and for how long (see 7.8.55). The task of the scheduler
is to enforce a given scheduling regime.

A scheduling plan is specified in terms of frames. A major frame consists of a sequence of minor
frames. When the end of a major frame is reached, the scheduler starts over from the beginning
and uses the first minor frame in a cyclic fashion. This means that major frames are repetitive.
A minor frame specifies a partition and a precise amount of time. This information is directly
applied and enforced by the scheduler.

Figure 2.5 illustrates the structure of a major frame. The major frame consists of four minor
frames. Minor frame 2 has twice the amount of ticks than the other minor frames, which have
identical length. Time progresses on the horizontal axis from left to right.

When the major frame starts, partition 1 is scheduled for the length of minor frame 1, followed
by a switch to partition 2. After that the two partitions are again scheduled in alternating fashion.

On systems with multiple CPU cores, a scheduling plan must specify a sequence of minor frames
for each processor core. For any given major frame, the sum of all minor frame time slices of a
given CPU core must amount to the same time duration, i.e. a major frame has the same length
on all cores. In order for the cores to not run out of sync, all CPUs synchronize by means of a
barrier prior to starting a new major frame. Additionally, CPUs that switch minor frames at the
same time also synchronize the execution of the next minor frame.

10

Major frame

Minor 1 Minor 2 Minor 3 Minor 4

Partition 1

Partition 2

Figure 2.5: Example major frame

An example of a scheduling plan for multiple CPUs is depicted in figure 2.6. It illustrates a
system with two CPUs that execute various scheduling partitions indicated by different colors.

Major frame 1 Major frame 2

CPU0

CPU1

Figure 2.6: Example scheduling plan

CPU0 is executing the same partition for the whole duration of the major frame. The second
CPU is executing two partitions (blue and green) in alternating order. As can be seen, partition
green is granted more CPU cycles than partition blue. All CPUs of the system wait on a barrier at
the beginning of a new major frame. This guarantees that all logical CPUs of a system are in-sync
when major frames change.

The scheduler is also kept simple by the fact that subjects, and thus partitions, never migrate
between cores: they can only be scheduled on one particular CPU. This invariant is checked and
enforced during the policy validation step (see [3]).

Since a system performs diverse tasks with different resource requirements, there is a need for
some flexibility with regards to scheduling. To provide this degree of freedom while keeping the
kernel complexity low, multiple scheduling plans can be specified in the system policy. By defining
a distinct plan for each anticipated workload in the policy, the scheduling regimes are fixed at
integration time.

The privileged subject τ0 is allowed to elect and activate one of the scheduling plans. It specifies
the active scheduling plan using a global variable called New_Major which currently makes up
the entirety of the τ0-Kernel interface, see 4.6. On major frame change, the BSP copies this value
to the global current major frame ID. The value is exclusively written by the BSP while it is used
by all cores to determine the currently active major frame, see 5.5.

Refer to [3] for a description of τ0 as well as the motivation behind it.

2.6.1 Yield and Sleep Operations
While scheduling groups support the efficient cooperation of multiple subjects, subjects which need
to be spatially but not temporally isolated from each other cannot profit from it. This is where
scheduling partitions can help: scheduling groups that do not need mutual, temporal isolation
can be assigned to the same scheduling partition. Note that systems where all subjects must be
temporally isolated can be realized by assigning each subject to one scheduling group and each
scheduling group to a single scheduling partition.

Whenever a minor frame changes, a scheduling operation for partitions is performed by choosing
a new scheduling group in a round-robin fashion. The next scheduling group is selected from among
all active scheduling groups of the partition. The active subject of the newly selected group is then
scheduled. If no active scheduling group exists, i.e. all groups of the partition are asleep, Muen
enters the current subject while setting the VMX Activity State to 1 (i.e. halted) which suspends
execution for the remainder of the current minor frame.

11

Subjects can trigger source events with a yield action if they want to relinquish the remainder of
the minor frame to a different scheduling group of the same partition. This instructs the kernel to
reschedule the scheduling partition, i.e. look up the next active scheduling group and schedule the
current subject of that group. If there is no other active group, the same subject will be scheduled
again.

A typical use case would be a subject that runs a server loop in which it checks if a client has
submitted some work. If no pending work is present, instead of busy looping, it can perform a
yield operation. While the CPU is relinquished, it will stay the active subject of the group and be
executed again, when the group is scheduling the next time.

The sleep operation can be initiated by triggering an event that has been configured with a sleep
action in the policy. The kernel will mark the scheduling group of this subject as inactive which
means it will no longer get CPU execution time. The scheduler then reschedules the partition
and selects the next active scheduling group. If no scheduling group is active in the partition, the
scheduling partition transitions to the sleep state and no subject will be executed for the rest of
the minor frame.

An inactive scheduling group can become active by an external interrupt, an event that has
been received/marked pending or a timed event that expired. The timers of all inactive scheduling
groups are managed in a chronologically sorted list (called timer list). Insertion happens on
scheduling group deactivation and removal when a timer expired. The kernel updates the timer
list as part of updating the scheduling group information, see 7.4.1 for the implementation details.

Event-driven subjects, which receive interrupts whenever work is pending, can use the sleep
mechanism for efficient use of CPU time, see [2] for detailed information how such a component
can be configured and implemented.

2.7 Interrupts
Devices can generate hardware interrupts that must be delivered to the subject that controls the
device. The system policy defines which hardware interrupt is assigned to what subject and what
vector should be injected if such an interrupt occurs.

Since resource allocation is static, a global mapping of hardware interrupt to destination subject
including the interrupt vector to deliver, is generated at integration time, see the Skp.Interrupts
package in section 7.8.53. The kernel uses the Vector_Routing array at runtime to determine
the destination subject that constitutes the final recipient of the interrupt.

The IRQ trigger mode is also designated by the Skp.Interrupts package. Masking of the
IRQ is done by the kernel for level-triggered IRQs. A subject can unmask the IRQ by triggering
an event that has the corresponding unmask IRQ action specified in the policy.

Each subject has a bitmap of 256 pending interrupts, each entry corresponding to the vector
number of the interrupt. An interrupt is forwarded to a subject by setting the correct bit in the
data structure associated with the destination subject. Once execution of a subject is resumed, the
kernel checks the pending interrupts and, if one is pending, injects it, which completes the delivery
of the interrupt. If multiple interrupts are pending, the one with the highest vector number is
processed.

Subjects can control interrupt injection by setting or clearing the Interrupt enable flag 1. As
long as the flag is clear, the kernel will not inject any pending interrupts. A subject can use the
cli and sti instructions to clear/set the flag.

To simplify the kernel control flow, the VMX External-interrupt exiting feature is used, see
Intel SDM Vol. 3C, "24.6.1 Pin-Based VM-Execution Controls". With this control set, an external
interrupt results in a VM exit. This means that instead of a separate interrupt handler routine,
the same kernel entry point as any other VM exit is invoked by the hardware. The appropriate
VM exit reason set by the hardware designates that the cause was an external interrupt and the
interrupt handler routine is executed. The "Acknowledge Interrupt on Exit" VM-Exit control is
leveraged, so the hardware acknowledges the interrupt controller and stores the interrupt vector
in the VM-exit interruption-information field, see Intel SDM Vol. 3C, "24.7.1 VM-Exit Controls".

Thus, interrupt handling is implemented as specified in Intel SDM Vol. 3C, "33.3.3.3 Processing
of External Interrupts by VMM".

1RFLAGS.IF

12

Spurious or invalid interrupts that have no valid interrupt to subject mapping are ignored by
the kernel.

2.8 Exceptions
We distinguish hardware exceptions that occur in VMX non-root mode, while executing a subject,
and in VMX root mode when the kernel is operating.

As the kernel is implemented in the SPARK programming language (see section 8.1) with a
prove of absence of runtime errors, exceptions during regular operation in VMX root-mode are not
expected. If for some unexpected reason (e.g. non-maskable interrupt NMI) an exception occurs,
it indicates a serious error. In that case, a crash audit record is filled with the appropriate error
information and the system is halted. Refer to section 7.6 for a detailed description of the Crash
Audit implementation.

In the case of an exception being caused by the execution of a subject, the kind of exception
handling depends on the vCPU profile of the running subject. The vCPU configuration of each
subject is specified as part of the system policy. If the subject is not allowed to handle a particular
exception itself, then a VM exit occurs with the exit reason indicating the cause. The kernel handles
the trap like any other exit and consults the subject’s trap table to determine the appropriate action
as specified in the policy, e.g. switching to a monitor subject.

Subjects may be allowed to process exceptions themselves, e.g. a VM subject performing its
own page fault handling. In this case, an exception is directly delivered to the subject’s exception
handler via the subject’s IDT. The kernel is not involved at all in this case.

2.9 Crash Audit
Every software system should provide a mechanism for auditing important events. However, overly
intricate audit implementations can quickly lead to complexity throughout the code base. In case
of the Muen kernel, only two important events that require auditing have been identified: one is
kernel started and the other is a fatal error condition resulting in an emergency halt.

Note that on the system level, there are certainly many more audit-worthy events. However
these can be handled by appropriate error handling routines inside subjects, or by dedicated
audit subjects using existing mechanisms (e.g. events). The kernel does not need to provide
any additional, audit-specific functionality.

The first event is inherent in the execution of the kernel after a successful system start. If
there is an error during early machine initialization before the actual Muen-based system starts
execution, then there is no way for the kernel to recognize and report such an event. However,
once the kernel does start execution, the successful system start has occurred so in that sense the
event becomes self-evident through running code.

The crash audit mechanism is in charge of covering the second case and thus handling fatal,
unrecoverable errors which lead to immediate system halt and subsequent system reset. Its main
purpose is to record information regarding the error condition and the current system state to
enable administrators to identify and determine the cause of the issue.

Audit information is stored in a dedicated, uncached memory region which retains its contents
across system reboots. This region is mapped by all kernel instances on each CPU. Read access
may be granted to a subject to enable audit readout for further processing, e.g. debug server
outputting the information via serial log. Note that processing of the audit information may also
be done outside of a Muen system, e.g. by a crash audit aware boot loader.

When a fatal crash occurs, the kernel allocates a free audit entry, sets the appropriate reason
for the current cause and fills the remaining context fields with relevant data. Multiple cores may
experience a fatal failure condition at the same time (e.g. faulty hardware resulting in Machine-
Check Exceptions broadcastet to all CPU cores). Since each kernel instance performs audit entry
reservation atomically, this scenario is supported.

After a reboot, the crash audit entries may be inspected. Entries are identified as current,
when the boot count of the header and the generation in the given entry match. Otherwise, the
audit entry contains stale information from a previous crash which has already been processed.
This enables reliable identification of current audit entries to avoid duplicate processing.

13

For a complete specification of the data structures and the information that is recorded by the
crash audit mechanism, refer to appendix 9.1.

2.10 Subject Interaction
Compared to applications or virtual machines running on classical kernels (e.g. monolithic or
microkernel), subjects have very limited means to influence the overall system. Only the resources
assigned in the policy are accessible and the interaction with the SK is limited to the following
mechanisms.

Subjects can trigger events statically defined in the policy. If there is a valid event number, the
kernel executes the action defined by the event. Invalid event numbers are ignored. Events can be
thought of as a very static form of hypercalls, that can be actively invoked by a subject.

When so-called traps occur, e.g. access to an unauthorized memory region, a trap table also
specified in the policy is consulted. Similar to handling of events, the defined action is executed. In
contrast to events, traps generally happen whenever a subject performs an action that is disallowed
by the policy, e.g. attempt to read the Timestamp Counter (TSC). A trap always interrupts subject
execution and invokes the kernel.

Several types of traps are directly handled by the kernel as they are used to implement kernel
functionality or affect state that is controlled by the kernel. These traps are:

External Interrupt
Processing of external device interrupts

VMX-preemption timer expired
Main kernel timer used for scheduler implementation.

Interrupt window
Mechanism for delivery of pending subject interrupts.

Exception or non-maskable interrupt (NMI)
Handling of Machine-Check Exceptions (MCEs) and NMIs.

VM-entry failure due to machine-check event
Further handling of MCEs.

Xsetbv instruction
Handling of XCR0 register which controls the extended processor/FPU features and state.

A detailed description of the implementation is given in section 7.3. For a list of all VM exit
reasons, refer to Intel SDM Vol. 3D, "Appendix C VMX Basic Exit Reasons" [7].

The last interaction option is the timed event mechanism. Each subject can define an event
number and a time at which the event should be triggered. At the beginning of each time slice, the
kernel checks whether the event trigger value belonging to the subject to be executed has expired.
If this is the case, the event designated by the event number is treated in the same way as the
regular event mechanism.

An important use case for traps and events that enable to change the currently active subject,
is running a subject that depends on a monitor subject for emulation of certain operations, e.g.
serial device emulation. In this scenario, whenever a subject performs an operation that triggers a
trap the policy specifies an event of mode switch with the target being the monitor subject. This
instructs the kernel to hand over execution to the monitor, in effect reflecting the trap. The monitor
subject can then determine the cause for the trap based on the information available in the subject
state that is mapped into the monitor’s address space. It can then emulate the appropriate action
by changing the subject’s state and finally hand over execution back by triggering an event that
has been specified in the policy to resume the origin subject. Prior to resumption the kernel will
synchronize the subject state to the VMCS, effectively continuing execution of the origin subject
with the new, adjusted state.

Through the use of the event mechanism, the vast majority of traps is handed over to a second
subject to process. Only a few event actions are handled directly by the kernel: unmask IRQ,
subject yield, subject sleep, system panic, reboot and poweroff, see also 7.3.5.

14

2.11 Avoidance of Covert Channels
So called side channels allow attackers to deduce information about internal, secret state of an un-
suspecting subject by observing e.g. the memory consumption or changes in the micro-architectural
state of the hardware. The victim process is unintentionally leaking sensitive information through
the side channel, which is used by the attacker to infer data it is not supposed to have access to.

A collaborating sender/receiver pair can use a side channel to transfer information past the
system’s security mechanism, which is called a covert channel. The simplicity of SKs enables the
explicit consideration of the problem of covert channels, which are classified as data or timing
channels.

In a data channel, information may for example be hidden in metadata, such as using individual
memory bits in an unconventional manner. The information to be transmitted is encoded by means
of these bits, the receiver knows the special coding and is able to extract the data.

Time channels use temporal variance of operations to transmit information. The receiver
measures this variance and can thereby extract data bits. If a particular operation can be carried
out quickly, then this is e.g. interpreted as 1; otherwise a 0 is assumed.

As a general rule, only the required resources with minimal rights are available to both the kernel
as well as subjects. This has the effect that the exposure of data is greatly reduced, minimizing
the information which could be transferred via side channels. See also section 3.1 for further
information on how data is handled in the Muen kernel.

Data channels can be largely avoided or eliminated by careful assignment of resources to subjects
in the system policy. On the other hand, timing channels require careful consideration of all
shared resources and, in many cases, can only be limited in capacity by means of a suitable system
structure.

Muen offers the possibility to provide subjects with a coarse-grained time source, i.e. removing
direct access to the hardware Time-Stamp Counter (TSC). Due to the low temporal resolution,
observing a side channel is made significantly more difficult and thus the achievable transmission
rate in practice is greatly reduced. In addition, subjects are preferably only assigned a single CPU,
which prevents them from easily constructing a high resolution time source. The timed event
mechanism also offers limited accuracy, since such events are only evaluated at the beginning of a
minor frame.

Deterministic scheduling can be leveraged to ensure that the amount of shared hardware (e.g.
L1 cache, Branch Predictor Cache, Translation Lookaside-Buffer, etc.) between specific subjects
is reduced. By appropriate configuration, it can be guaranteed that two subjects are not running
on the same physical CPU or not concurrently on separate CPUs. If subjects are executed at
different times, the observability of side channels and their bandwidth is limited since the sender
and receiver must always alternate encoding and decoding of data. This also applies to subjects
running on the same physical core, even though they still share a lot of hardware state. To further
reduce bandwidth in this case, the integrator may explicitly schedule a subject, which "scrubs" the
(micro-)architectural state, between the execution of other subjects. Thus, the exact control over
scheduling of subject enables system integrators to reduce the risk of side channels.

Furthermore, on Muen systems, Hyper-Threading is always disabled because hardware threads
share much more (micro-)architectural state than physical CPU cores.

15

Chapter 3

Data Model

3.1 Multicore Support
Modern computers have an increasing number of CPU cores per processor. To utilize the hardware
to its full potential, the Muen SK provides Multicore support.

In a multicore system, a physical CPU provides more than one processor core in a single
package. Additionally, systems equipped with Intel’s Hyper-Threading Technology (HTT) have
two or more logical CPUs per core. A logical CPU is an execution unit of the processor that runs
an application or a kernel process.

Since HyperThreads located on the same CPU core share big parts of the micro-architectural
state without effective means of isolation, Muen does not use HTT. It effectively disables HTT by
only executing one hardware thread per physical CPU core.

In MP systems, one processor termed bootstrap processor (BSP) is responsible for system ini-
tialization, while the other processors, called application processors (APs), wait for an initialization
sequence as specified by Intel [7].

At the basis of the multicore design is the symmetric execution of the kernel on each CPU core.
This means that all cores execute an instance of exactly the same Muen kernel code. The only
difference being, that parts of the system bring up code are exclusively run by the BSP.

An important aspect of Muen’s multicore design is that subjects are pinned to a specific CPU
core. Subjects do not migrate between cores and are exclusively executed on the core defined
by the associated subject specification in the system policy. This removes complexity from the
kernel and the overall system by thwarting potential isolation issues which could be caused by
the transfer of subjects and their state between cores. This design decision further simplifies the
kernel implementation since no complex cross-core synchronization and migration algorithm has
to be devised and implemented. Furthermore, each core can be restricted to only have access to
the data structures associated with subjects it is tasked to execute.

Since each CPU executes a distinct instance of the Muen kernel, by default, all kernel data
is CPU-local, meaning it is not shared between kernels running on different CPUs. Global data
is shared explicitly and is designated as such by placing it in a dedicated .globaldata linker
section. One special case of a global data structure is the crash audit storage: while it is shared
by all CPUs it may also be made accessible to subjects, e.g. for processing of crash information.
Thus it is treated separately and not placed into the .globaldata linker section.

Kernel data can be categorized as follows:

1. CPU-local data

2. CPU-local, subject-related data

3. Global data, shared by all CPUs

Aside from these data structures, there are also interfaces used by the kernel to interact with
external entities, such as memory-mapped devices like the IOMMU. The Tau0 interface is in the
same category, as it is used by Tau0 to communicate with the kernel.

The following sections provide explanations for each of the main kernel data categories.

16

3.2 CPU-local Data
Library level data structures without special aspects (e.g. address clauses) are private, meaning
each CPU has their own, local copy. This is achieved by providing each CPU with separate copies
of the necessary binary sections (.data and .bss). Only the memory regions of sections belonging
to a given CPU are mapped into the address space of that particular kernel.

3.2.1 Initialization
Initialization of CPU-local data is performed by each CPU during Elaboration 1 via a call to
adainit in the assembly startup code.

3.3 Local Subject-related Data
Data structures associated with subjects, such as subject state or timed events, are implemented
as arrays where each element is associated with a particular subject. The global subject ID is
used as an index into the array to link an element to a specific subject. The array elements are
dimensioned to 4K so they can be mapped as independent memory pages.

These arrays are placed at specific virtual memory addresses. Only the elements belonging to
subjects executed by a given CPU are mapped into the address space of that particular kernel. The
correctness of the correspondence of subject and array element/index is checked by the validator
tool.

3.3.1 Initialization
Each element is initialized by the executing CPU when the SK.Scheduler.Init_Subject
procedure is executed during system initialization.

3.4 Global Shared Data
Some data is accessed by all CPUs. This data is located in a separate, distinct linker section
(.globaldata) which is backed by a single physical memory region, shared across all CPUs.
Each kernel has a mapping of this region at the same memory location.

Variable instances that are shared globally are placed in the linker section .globaldata via
use of the Ada Linker_Section aspect. By convention, concerned variables are prefixed with
Global_.

3.4.1 Initialization
Initialization of global shared data is performed either via static initialization (if possible) or using
explicit initialization procedures that are only executed by a single CPU, i.e. the BSP.

1For a definition of elaboration, see Ada Reference Manual, 3.11.

17

Chapter 4

Kernel State

This section lists kernel data structures that are placed at specific memory addresses and used
to maintain runtime state such as per-subject state descriptors. Furthermore external interfaces,
e.g. for interaction with devices such as IOMMUs and I/O APIC are specified. The description
includes the purpose as well as the memory representation of these interfaces.

4.1 Per-CPU data
Objects of category 1 in the kernel data model have a per-CPU copy and are distinct to each kernel
running on a different CPU. Instances of these data structures are listed in this section.

4.1.1 SK.Scheduler.Current_Minor_Frame_ID
ID of currently active minor frame.

4.1.2 SK.Scheduler.Scheduling_Partitions
Scheduling partitions management information. The array stores the currently active group, the
earliest timer deadline and the sleeping state of each scheduling partition.

4.1.3 SK.Scheduler.Scheduling_Groups
Scheduling groups management information. The array stores the currently active subject, position
in the timer list as well as the timeout deadline of each scheduling group.

4.1.4 SK.Interrupt_Tables.Instance
Descriptor tables instance consisting of Global Descriptor Table (GDT), Interrupt Descriptor Table
(IDT), Task State Segment (TSS) as well as GDT and IDT descriptors.

4.1.5 SK.FPU.Active_XCR0_Features
Active FPU features that are supported by the hardware and are enabled.

4.1.6 SK.FPU.Current_XCR0
Current value of XCR0. Used to determine if write to XCR0 register is actually necessary or if it
already contains that value.

4.2 Skp.IOMMU.IOMMUs

Type Address
record 16#50_1000#

External interface used to access and program IOMMU(s), see also section 6.2.

18

4.2.1 Purpose
Memory-mapped interface to IOMMUs, see Intel Virtualization Technology for Directed I/O, sec-
tion 10.4 [6].

4.2.2 Structure

Table 4.2: The structure of the record Skp.IOMMU.IOMMUs_Type.

Name Type Bytepos First Bit Last Bit

IOMMU_1 Skp.IOMMU.IOMMU_1_Type 0 0 4223
Memory-mapped registers of IOMMU 1.

Padding_1 Skp.IOMMU.Bit_Array 528 0 28543
Padding for IOMMU 1 to 4K.

IOMMU_2 Skp.IOMMU.IOMMU_2_Type 4096 0 4223
Memory-mapped registers of IOMMU 2.

Padding_2 Skp.IOMMU.Bit_Array 4624 0 28543
Padding for IOMMU 2 to 4K.

4.3 SK.IO_Apic.Register_Select

Type Address
SK.Word32 16#50_0000#

External interface used in conjunction with 4.4 to access and program the I/O APIC, see also
section 6.1.

4.3.1 Purpose
I/O Register Select Register (IOREGSEL). This memory-mapped register selects the I/O APIC
register to be read/written. The data is then read from or written to the selected register through
the IOWIN register, see [5] section 3.1.1.

4.4 SK.IO_Apic.Window

Type Address
SK.Word32 16#50_0010#

External interface used in conjunction with 4.3 to access and program the I/O APIC, see also
section 6.1.

4.4.1 Purpose
I/O Window Register (IOWIN). This memory-mapped register is used to write to and read from
the register selected by the IOREGSEL register, see [5] section 3.1.2.

4.5 SK.Crash_Audit.Instance

Type Address
record 16#40_0000#

Global crash audit information data structure. It is not put in the CPU-Global section since
it may be accessible by subjects (e.g. for outputting crash information). Additionally the memory
type of the region must be Uncached (UC) so the content survives a warm start/system reboot.

For a complete specification of the data structures and the information that is recorded by the
crash audit mechanism, refer to appendix 9.1.

19

4.5.1 Purpose
Crash Audit Store. It provides storage space for multiple data sets of crash audit information and
associated meta data.

4.5.2 Structure

Table 4.6: The structure of the record SK.Crash_Audit.Crash_Audit_Page.

Name Type Bytepos First Bit Last Bit

Crash_Info SK.Crash_Audit_Types.Dump_Type 0 0 31863
Crash information containing the entire crash audit dump data.

Padding SK.Crash_Audit.Padding_Type 3983 0 903
Padding to fill the memory page.

4.6 SK.Tau0_Interface.New_Major

Type Address
Skp.Scheduling.Major_Frame_Range 16#3f_f000#

External interface to τ0.

4.6.1 Purpose
ID of major frame designated as active on next major frame switch. Tau0 writes this value while
the kernel executing on BSP reads it.

4.7 SK.FPU.Subject_FPU_States

Type Address
array of record 16#c0_0000#

Local subject-related data, see section 3.3.

4.7.1 Purpose
The FPU state array stores the hardware FPU state of each subject in a separate save area. Prior
to the execution of a subject, its FPU state is loaded from the associated storage area into the
FPU. On exit from a subject, the hardware FPU state is stored to the same area. Note that Muen
performs eager FPU state switching.

4.7.2 Structure
The FPU state consist of the subject XCR0 value and the hardware-managed XSAVE area which
is used to store the FPU state.

Table 4.9: The structure of the record SK.FPU.FPU_State_Type.

Name Type Bytepos First Bit Last Bit

XCR0 SK.Word64 0 0 63
Extended Control Register 0 (XCR0).

Padding SK.FPU.Padding_Type 8 0 447
Padding in order to guarantee 64-byte alignment of XSAVE area.

XSAVE_Area SK.XSAVE_Area_Type 64 0 32255
XSAVE area used to save the FPU state.

4.8 SK.Scheduling_Info.Sched_Info

20

Type Address
array of record 16#b0_0000#

Local subject-related data, see section 3.3.

4.8.1 Purpose
Scheduling info regions which provide the start and end timestamp of the current minor frame.
Each scheduling partition has their own, independent information which is mapped read-only into
the address space of all subjects belonging to that partition.

4.8.2 Structure
A scheduling info page consist of the scheduling data and is padded to a full 4K memory page.
Explicit padding makes sure the entirety of the memory is covered and initialized.

Table 4.11: The structure of the record SK.Schedul-
ing_Info.Sched_Info_Page_Type.

Name Type Bytepos First Bit Last Bit

Data Muschedinfo.Scheduling_Info_Type 0 0 127
Scheduling information (i.e. minor frame start/end timestamp).

Padding SK.Scheduling_Info.Padding_Type 16 0 32639
Padding to fill the memory page.

4.9 SK.Subjects.Descriptors

Type Address
array of record 16#60_0000#

Local subject-related data, see section 3.3.

4.9.1 Purpose
Descriptors used to manage subject states. Each subject has an associated descriptor, identified
by subject ID, which stores its state, e.g. register values.

4.9.2 Structure
A subject state page consist of the subject state data and is padded to a full 4K memory page.
Explicit padding makes sure the entirety of the memory is covered and initialized.

Table 4.13: The structure of the record SK.Subjects.Subjects_State_Page.

Name Type Bytepos First Bit Last Bit

Data SK.Subject_State_Type 0 0 3943
State information (e.g. register values) of the associated subject.

Padding SK.Subjects.Padding_Type 493 0 28823
Padding to fill the memory page.

21

4.10 SK.Subjects_Interrupts.Pending_Interrupts

Type Address
array of record 16#80_0000#

Local subject-related data, see section 3.3.

4.10.1 Purpose
Bitmap of the currently pending subject interrupts. The CPU executing the associated subject
consumes one pending interrupt prior to resuming the subject if it is in a state to accept interrupts.

4.10.2 Structure
An subject interrupt page consist of the pending interrupt data and is padded to a full 4K memory
page. Explicit padding makes sure the entirety of the memory is covered and initialized.

Table 4.15: The structure of the record SK.Subjects_Interrupts.Interrupt_Inter-
face_Type.

Name Type Bytepos First Bit Last Bit

Data Muinterrupts.Interrupt_Interface_Type 0 0 255
Pending interrupts stored in the form of a bitmap.

Padding SK.Subjects_Interrupts.Padding_Type 32 0 32511
Padding to fill the memory page.

4.11 SK.Subjects_MSR_Store.MSR_Storage

Type Address
array of record 16#90_0000#

Local subject-related data, see section 3.3.

4.11.1 Purpose
MSR save/restore storage area of each subject identified by ID. Hardware saves and restores MSRs
on each VM-Entry and Exit as specified by Intel SDM Vol. 3C, "24.7.2 VM-Exit Controls for
MSRs" and Intel SDM Vol. 3C, "24.8.2 VM-Entry Controls for MSRs" [7].

4.11.2 Structure
A subject MSR storage page consist of the MSR data and is padded to a full 4K memory page.
Explicit padding makes sure the entirety of the memory is covered and initialized.

Table 4.17: The structure of the record SK.Subjects_MSR_Store.MSR_Stor-
age_Page.

Name Type Bytepos First Bit Last Bit

MSRs SK.Subjects_MSR_Store.MSR_Storage_Table 0 0 4095
MSR data as saved and restored by the CPU/hardware.

Padding SK.Subjects_MSR_Store.Padding_Type 512 0 28671
Padding to fill the memory page.

22

4.12 SK.Timed_Events.Subject_Events

Type Address
array of record 16#70_0000#

Local subject-related data, see section 3.3.

4.12.1 Purpose
Subject timed events array. Each subject has an associated timed event, identified by subject ID,
which it can use to trigger a policy-defined event at a specified timestamp.

4.12.2 Structure
A subject timed event page consist of the timed event data and is padded to a full 4K memory
page. Explicit padding makes sure the entirety of the memory is covered and initialized.

Table 4.19: The structure of the record SK.Timed_Events.Timed_Event_Page.

Name Type Bytepos First Bit Last Bit

Data Mutimedevents.Timed_Event_Interface_Type 0 0 127
Timed event data (i.e. timestamp when to trigger the event and the number of the
event to trigger).

Padding SK.Timed_Events.Padding_Type 16 0 32639
Padding to fill the memory page.

4.13 SK.VMX.VMCS

Type Address
array of record 16#a0_0000#

Local subject-related data, see section 3.3.

4.13.1 Purpose
A Virtual Machine Control Structure (VMCS) is used by the hardware to manage the VM state
of each subject designated by ID. The VM state is saved and restored on each VM-exit and entry
according to the VM-controls and as specified in Intel SDM Vol. 3C, "Chapter 24 Virtual Machine
Control Structures" [7].

4.13.2 Structure
Virtual-Machine Control Structure as specified in Intel SDM Vol. 3C, "Chapter 24 Virtual Machine
Control Structures".

Table 4.21: The structure of the record SK.VMX.VMCS_Region_Type.

Name Type Bytepos First Bit Last Bit

Header SK.VMX.VMCS_Header_Type 0 0 63
Header comprised of VMCS revision identifier and VMX-abort indicator.

Data SK.VMX.VMCS_Data 8 0 32703
VMCS data which is declared as implementation-specific by Intel.

23

Chapter 5

CPU-Global State

This section lists global data structures that are shared across CPU cores via the globaldata
linker section, describing their purpose. All the instances presented below fall into the data model
category 3 described in section 3.4.

Aspects are Ada/SPARK language level constructs that determine operational properties of
variable instances. The following aspects are referenced in this chapter:

Async_Readers
A component external to the program might read a value written to the object at any time,
see SPARK 2014 Reference Manual, section 7.1.2 [1].

Async_Writers
A component external to the program might update the value of an object at any time, see
SPARK 2014 Reference Manual, section 7.1.2 [1].

Volatile
The compiler is instructed to include each read and update of a volatile object, see Ada
Language Reference Manual, C.6/20 [4].

5.1 SK.Crash_Audit.Global_Next_Slot

Linker_Section Aspects
.globaldata Volatile, Async_Readers, Async_Writers

5.1.1 Purpose
Index of next free crash audit dump slot. It can be read and written by all CPUs. Data consistency
is established via atomic access.

5.2 SK.IO_Apic.Global_IO_APIC_Lock

Linker_Section Aspects
.globaldata

5.2.1 Purpose
Spinlock guarding against concurrent access to the I/O APIC by kernels running on different CPUs.

5.3 SK.Subjects_Events.Global_Pending_Events

Linker_Section Aspects
.globaldata Volatile, Async_Writers, Async_Readers

24

5.3.1 Purpose
Bitmap of the currently pending subject target events. Each subject has a corresponding pending
events data structure which may be accessed asynchronously by all CPU cores. The CPU executing
the associated subject consumes pending events while all CPUs may mark target events as pending
if allowed by the policy. Data consistency is established via atomic access.

5.4 SK.Scheduler.Global_Current_Major_Start_Cycles

Linker_Section Aspects
.globaldata

5.4.1 Purpose
Current major frame start time in CPU cycles. It is exclusively written by BSP and only read by
APs. Data consistency is established via global synchronization barrier.

5.5 SK.Scheduler.Global_Current_Major_Frame_ID

Linker_Section Aspects
.globaldata

5.5.1 Purpose
ID of currently active major frame. It is exclusively written by BSP and only read by APs. Data
consistency is established via global synchronization barrier.

5.6 SK.Scheduler.Global_Group_Activity_Indicator

Linker_Section Aspects
.globaldata Volatile, Async_Readers, Async_Writers

5.6.1 Purpose
Scheduling group activity indicator bitmap. Tracks the active scheduling groups of each scheduling
partition. The bitmap position to scheduling group mapping is specified in the scheduling partition
config of the policy.

5.7 SK.MP.Global_Minor_Frame_Barriers

Linker_Section Aspects
.globaldata Volatile, Async_Readers, Async_Writers

5.7.1 Purpose
Minor frame barriers are used to synchronize CPUs on minor frame switches. They are configured
according to the scheduling plans specified in the system policy. They are located in the global data
section and thus accessible to all CPU cores. Data consistency is established via atomic access.

5.8 SK.MP.Global_All_Barrier

Linker_Section Aspects
.globaldata Async_Readers, Async_Writers

25

5.8.1 Purpose
The all CPU barrier is used to synchronize all CPU cores, i.e. during boot and on major frame
switches. It is located in the global data section and thus globally accessible to all CPU cores.
Data consistency is established via atomic access.

26

Chapter 6

Devices

This section describes what I/O devices the kernel uses and for what purpose.

6.1 Interrupt Controllers
The kernel controls and programs all interrupt controllers since it must ensure that only IRQs
according to the policy are generated and routed to the assigned subject, and thus CPU. On x86,
there are three different interrupt controllers that must be considered: PIC, APIC and I/O APIC.

The legacy PIC is disabled since only the APIC and I/O APIC are used. The APIC is CPU-
local and is setup during system initialization by each CPU core. The I/O APIC and its interrupt
routing table is programmed by the BSP according to the system policy.

During normal operation, the APIC is accessed to acknowledge End-Of-Interrupt (EOI) when-
ever an IRQ is handled, in order to unblock processing of other interrupts. In case of level-triggered
IRQs, the I/O APIC is used to mask and unmask the corresponding redirection table entries.

Enforcement that only the configured interrupts are raised is done by the IOMMU Interrupt
Remapping functionality, see section 6.2.

+ Note that IRQs raised via the I/O APIC are also routed through the IOMMU and thus
affected by interrupt remapping.

6.2 IOMMU
The IOMMU performs two critical functions to constrain devices to only access resources and raise
interrupts as defined in the system policy: DMA Remapping and Interrupt Remapping.

DMA Remapping (DMAR) performs address translation for device memory access, analogous
how the MMU operates for subjects. Each DMA request is identified by the device source ID which
is associated with the VT-d page tables generated for the given device. During startup, the kernel
installs the pre-generated data structure and activates DMAR by programming the IOMMU. For
further information see Intel VT-d Specification, "3 DMA Remapping" [6].

The IOMMU Interrupt Remapping (IR) feature with the remapping table generated during
integration assures that only the correct interrupt vectors are raised according to the policy for
all assigned IRQs and that all other, non-assigned IRQs are blocked. During setup, the kernel
installs the remapping table and enables IR. For further information see Intel VT-d Specification,
"5 Interrupt Remapping" [6].

6.3 Timer
Muen uses the VMX-preemption timer as the timing source to realize preemption of subjects when
a minor frame expires. It is a per-CPU timer, which is programmed by writing a countdown value
in the corresponding VMCS field. In VMX non-root mode, the VMX-preemption timer counts
down at a rate proportional to the TSC and causes a VM-exit when the counter reaches zero. For
further documentation see Intel SDM Vol. 3C, "25.5.1 VMX-Preemption Timer".

27

Note that Muen only supports systems that have the "Invariant TSC" feature, see Intel SDM
Vol. 3B, "17.17.1 Invariant TSC".

6.4 Diagnostics
The debug build of the Muen SK provides additional debug information at runtime via an I/O
device. This output can provide system integrators and developers with additional information,
e.g. in an unexpected error case, the crash audit information is output via the I/O device on
top of writing it to the crash audit memory region. Which hardware device the kernel uses for
diagnostics, if any, is specified in the system policy.

All debug output statements in the kernel are enclosed in pragma Debug. This has the effect
that none of them are present in the release version of the kernel as they are automatically removed
by the compiler.

28

Chapter 7

Implementation

This chapter describes the implementation of the Muen Kernel. To avoid/minimize divergence be-
tween this documentation and the actual implementation, the content of these sections is extracted
from source code annotations.

7.1 Kernel Entry Points
As already mentioned in section 2.4 the kernel control-flow is kept very simple and only has two
entry points with the following (symbol) names:

• Startup: kernel_entry_point (Assembler) →sk_initialize (SPARK)

• Scheduler Loop: vmx_exit_handler (Assembler) →handle_vmx_exit (SPARK)

The assembler symbol is where the respective code flow starts which after some low-level steps
then calls the mentioned SPARK subprogram.

7.1.1 System Startup
After loading the Muen system image, a bootloader starts execution of the Muen code at the entry
point kernel_entry_point in file kernel/src/asm/init.S. After low-level system/CPU
initialization, the procedure SK.Kernel.Initialize in kernel/src/sk-kernel.ads is
called via the exported symbol sk_initialize. Section 7.2 describes the kernel initialization
process performed by this procedure.

7.1.2 Scheduler Loop
Whenever a VM-Exit occurs, the CPU passes the thread of execution from the subject code running
in VMX non-root mode to the kernel handle_vmx_exit procedure found in file kernel/src/sk-
kernel.ads. The hardware stores the execution state of the subject in the VMCS, transitions to
VMX root-mode by restoring the host state of the kernel and starts execution at the Exit handler.
Section 7.3 describes the main scheduler loop of the Muen kernel.

7.2 Initialization
The SK.Kernel.Initialize procedure is the Ada/SPARK entry point into the kernel during
the boot phase. It is invoked from Assembler code after low-level system initialization has been
performed. Kernel initialization consists of the following steps:

1. Initialize interrupt table (GDT, IDT) and setup interrupt stack.

2. Setup crash audit (BSP-only).

3. Validate required CPU (7.2.2), FPU, MCE and VT-d features.

29

4. If a required feature is not present, allocate a crash audit entry designating a system initial-
ization failure and provide initialization context information.

5. Enable hardware features (FPU, APIC, MCE).

6. Setup of Multicore memory barries (BSP-only).

7. Disable legacy PIC/PIT (BSP-only).

8. Setup of VT-d DMAR and IR (BSP-only).

9. Initialize subject pending events (BSP-only).

10. Wake up application processors (BSP-only).

11. Synchronize all CPUs to make sure APs have performed all steps up until this point.

12. Perform Intel microcode update on all cores. This is only done if the policy specifies an MCU
blob.

13. Enable VMX and enter VMX root-mode.

14. Setup VMCS and state of each subject running on this logical CPU, see 7.2.1.

15. Finish setup by initializing the scheduler.

16. Synchronize all logical CPUs prior to setting VMX preemption timer.

17. Arm VMX Exit timer of scheduler for preemption on end of initial minor frame.

18. Prepare state of initial subject for execution.

Registers of the first subject to schedule are returned by the initialization procedure to the calling
assembler code. The assembly then restores the subject register values prior to launching the first
subject. This is done this way so the initialization code as well as the main VMX exit handler
(7.3) operate the same way and the Assembler code in charge of resuming subject execution can
be shared, which further simplifies the code flow.

7.2.1 Scheduler Initialization
Scheduler initialization is performed by each CPU and consists of the following steps:

1. Initialize scheduling group data structures, i.e. set initially active subjects.

2. Load VMCS of initial subject.

3. Set start and end timestamp of the initial minor frame for the scheduling partition of the
first subject. The values are based on the current TSC and the deadline of the first minor
frame.

4. Set global minor frame barriers config (BSP-only).

5. Set initial major frame start time to now.

Subject Initialization

Clear all state associated with the subject specified by ID and initialize to the values of the subject
according to the policy. These steps are performed during startup and whenever a subject is reset.

1. Reset FPU state for subject with given ID.

2. Clear pending events of subject with given ID.

3. Initialize pending interrupts of subject with given ID.

4. Initialize timed event of subject with given ID.

5. Clear all MSRs in MSR storage area if subject has access to MSRs.

30

6. Reset VMCS of subject and make it active by loading it.

7. Set VMCS control fields according to policy.

8. Setup VMCS host fields.

9. Setup VMCS guest fields according to policy.

10. Reset CPU state of subject according to policy.

7.2.2 System state checks
Validate the system state to ensure correct execution of the kernel and VMX in particular, see
Intel SDM Vol. 3C, "31.5 VMM Setup & Tear Down" and "30.3 VMX Instructions", VMXON.

1. Check that the processor has support for VMX, see Intel SDM Vol. 3C, "23.6 Discovering
Support for VMX".

2. Check that VMX was not disabled and locked by the BIOS, see Intel SDM Vol. 3C, "23.7
Enabling and Entering VMX Operation".

3. Check that processor is in protected mode, i.e. CR0.PE is set.

4. Check that processor has Paging enabled, i.e. CR0.PG is set.

5. Check that processor is in IA-32e mode, i.e. IA32_EFER.LMA is set.

6. Check that virtual 8086 mode is not enabled, i.e. RFLAGS.VM is clear.

7. Check that the current processor operating mode meets the required CR0 fixed bits, see Intel
SDM Vol. 3D, "A.7 VMX-Fixed Bits in CR0".

8. Check that the current processor operating mode meets the required CR4 fixed bits, see Intel
SDM Vol. 3D, "A.8 VMX-Fixed Bits in CR4".

9. Check that the current processor supports x2APIC.

10. Check that the current processor has Invariant TSC, see Intel SDM Vol. 3B, "17.17.1 Invariant
TSC".

7.3 VMX Exit Handling
The VMX exit handle procedure Handle_Vmx_Exit is the main subprogram of the kernel. It is
invoked whenever the execution of a subject stops and an exit into VMX root mode is performed
by the hardware. The register state of the current subject is passed to the procedure by the
vmx_exit_handler assembly code (which is set as kernel entry point/HOST_RIP in the VMCS
of the trapping subject, see 7.7.5). The Handle_Vmx_Exit procedure first saves the state of
the subject that has just trapped into the exit handler, along with the register values and the exit
reason, see 7.5.1. Analogously, the FPU state of the current subject is saved. Then, the exit reason
is examined and depending on the cause the corresponding handler is called.

If an unrecoverable error occurs, i.e. NMI or MCE, a crash audit record with the appropriate
error information is allocated and the kernel performs a controlled system restart.

Once the exit has been dealt with, the execution of the next subject is prepared. Pending target
events, if present, are handled see 7.3.6. Then, a pending interrupt, if present, is prepared for
injection, see 7.3.7.

Finally, the VMX preemption timer is armed, the FPU and subject states are restored, see 7.5.2.
Additionally, to ensure the precondition of Subjects.Restore_State, the state is filtered
beforehand, see 7.5.4. The register values of the subject to be executed are returned by the
procedure. The calling assembler code then performs an entry to VMX non-root mode, thereby
instructing the hardware to resume execution of the subject designated by the currently active
VMCS.

31

7.3.1 External Interrupt Handling
First the vector of the external interrupt is validated. If it is an IPI or VT-d fault vector, no
further action is taken since the purpose was to force a VM exit of the currently executing subject.
A subsequent subject VM entry leads to the evaluation of pending target events and subject
interrupts.

If the vector is valid and neither an IPI nor VT-d fault vector, consult the vector routing table
to determine the target subject and vector as specified by the policy and insert the target vector
by marking it as pending. Note that there is no switching to the destination of the IRQ. The
interrupt will be delivered whenever the target subject is executed according to the scheduling
plan (i.e. IRQs are not preemptive).

If the interrupt vector designates an IRQ that must be masked, instruct the I/O APIC to mask
the corresponding redirection table entry.

Finally, signal to the local APIC that the interrupt servicing has completed and other IRQs may
be issued once interrupts are re-enabled.

7.3.2 Hypercall Handling
Hypercalls can be triggered by subjects executing the vmcall instruction in guest privilege level
0, which is assured by means of a precondition check. If subject user space/ring-3 tries to invoke
hypercalls, the VM-Exit is handled as a trap with exit reason VMCALL, see Handle_Trap. First
the event number of the hypercall is checked. If it is valid then the corresponding subject source
event as specified by the policy is looked up and processed, see 7.3.5. Note that events that are
not specified in the policy are ignored since these are initialized to source events that have no
action and an invalid target subject. After handling the source event, the instruction pointer of
the current subject is incremented so execution resumes after the vmcall instruction. The RIP of
the subject is incremented by the value of the current instruction length. If the hypercall triggered
a handover event, load the new VMCS.

7.3.3 Trap Handling
First the trap number is checked. If it is outside the valid trap range an appropriate crash audit
record is written and an error condition is signaled.

If the trap number is valid then the corresponding subject trap entry as specified by the policy
is looked up. Note that the policy validation tools enforce that an event must be specified for each
trap ID. The source event designated by the policy trap entry is processed, see 7.3.5. If the trap
triggered a handover event, load the new VMCS.

7.3.4 Timer Expiry
The VMX timer expiration designates the end of a minor frame. Handle the timer expiry by
updating the current scheduling information and checking if a timed event has expired as well.

In case of a regular minor frame switch, sync on minor frame barrier if necessary and switch to
next minor frame in the current major frame. If the end of the major frame has been reached, switch
to the first minor frame. Sync all CPU cores and then let the BSP update the next major frame
ID as designated by Tau0. Calculate next major frame start by incrementing the current global
start timestamp by the length (also called period) of the major frame that just ended. Update
the global major frame ID by setting it to the next ID. Set global major frame start cycles to the
new major frame start time. If the major frame has changed, set the corresponding minor frame
barrier configuration as specified by the system policy. After updating the major and minor frame
information, which is the first level of the hierarchical scheduling algorithm, scheduling partitions
are updated, see 7.4.1. Finally, publish the updated scheduling information to the next active
scheduling partition.

32

Check if timed event has expired and handle source event if necessary. If the new minor frame
designates a different subject, load its VMCS.

7.3.5 Source Event Handling
Source events are actions performed when a given subject triggers a trap or a hypercall. Source
events can also be triggered by the timed event mechanism. The increment RIP parameter specifies
that the RIP of the subject should be incremented if necessary, as part of the event handling (e.g.
sleep action).

First, the next subject to be executed is initialized to the current one. A handover event
may change this but otherwise the same subject is to be executed next. Then the operation
corresponding to the given source event action is performed.

• If the designated action is no action, then nothing is done.

• If the designated action is subject sleep, then a rescheduling of the partition with parameter
Sleep set to True is performed, see 7.4.2.

• If the designated action is subject yield, then a rescheduling of the partition with parameter
Sleep set to False is performed, see 7.4.2.

• If the designated action is system reboot, then a reboot with power-cycle is initiated.

• If the designated action is system poweroff, then a shutdown is initiated.

• If the designated action is system panic, then the system panic handler is invoked.

• If the designated action is unmask IRQ, then use I/O APIC to unmask the IRQ designated
by the event’s IRQ number.

If the source event has a valid target subject and target event set, then mark the target event
pending for the designated subject. Indicate activity for the target subject which may lead to a
subject being woken up if it is currently sleeping, see 7.4.7. Additionally, send an IPI to the CPU
running the target subject if specified by the policy. If the source event has a valid target subject
and it is a handover event, then set the target subject as the next subject to run.

System Panic Action Handling

A system panic action triggered by a source event of a given subject is handled by creating a crash
audit entry with the state of the triggering subject and invoking the crash audit facility.

7.3.6 Target Event Handling
Target events are actions performed prior to resuming execution of a given subject. First, check
if the subject specified by ID has a target event pending by consulting the subject events data. If
an event is pending, it is consumed by looking up the target event and its action as specified by
the policy.

• If the designated action is no action, then nothing is done.

• If the designated action is interrupt injection, then the interrupt with the vector specified in
the policy is marked as pending for the subject.

• If the designated action is subject reset, then the subject state is initialized, see 7.2.1.

At most 64 target events are processed since that is the maximum number of events that can be
pending. If an event was handled and the subject is currently sleeping, set it to running.

33

7.3.7 Interrupt Injection
A subject accepts interrupts if RFLAGS.IF is set and the VM interruptibility state does not
designate a blocking condition, see Intel SDM Vol. 3C, "24.4.2 Guest Non-Register State". If a
subject is ready to accept interrupts, check if it has a pending interrupt. Consume the pending
interrupt by writing the corresponding vector to the VM-entry interruption-information and setting
the valid bit, see Intel SDM Vol. 3C, "26.6 Event Injection". If the subject is currently sleeping,
then set it to running. Then, check if the subject has more pending interrupts and activate
interrupt window exiting if required, see Intel SDM Vol. 3C, "26.7.5 Interrupt-Window Exiting
and Virtual-Interrupt Delivery".

7.3.8 Xsetbv handling
Subjects can toggle FPU features by writing to XCR0 using the xsetbv instruction. The provided
value is validated according to Intel SDM Vol. 1, "13.3 Enabling the XSAVE Feature Set and
XSAVE-Enabled Features": If the value is invalid, inject a #GP exception. Note that effectively
the inserted event has type external interrupt. While it would not work in general but in this
specific case the exception error code is 0. If the value is valid, set the corresponding subject
XCR0 value, increment the subject RIP and resume execution.

1. Privilege Level (CPL0) must be 0.

2. Register index must be 0, only XCR0 is supported.

3. Only bits that we support must be set.

4. XCR0_FPU_STATE_FLAG must always be set

5. If XCR0_AVX_STATE_FLAG is set then XCR0_SSE_STATE_FLAG must be set as well.

6. If any of XCR0_OPMASK_STATE_FLAG or XCR0_ZMM_HI256_STATE_FLAG or
XCR0_HI16_ZMM_STATE_FLAG are set then all must be set.

7. If AVX512 is set then XCR0_AVX_STATE_FLAG must be set as well.

7.4 Scheduling Partition Management
At the first level, the scheduler can always determine which scheduling partition is active by keeping
track of the current major and minor frame and consulting the scheduling plans specified by the
policy. This part of the scheduler is described in section 7.3.4. At the second level, the scheduler
manages scheduling groups within partitions, which means determining which scheduling group
is active within each scheduling partition as well as which subject is currently active within each
scheduling group. This section describes how the second level of the hierarchical scheduler operates.
The two main operations are updating the scheduling partition information, which is done whenever
a regular scheduling operation is performed on the first level, i.e. on minor/major frame switch.
Secondly, a scheduling partition can explicitly be rescheduled by a subject performing a yield or
sleep action.

7.4.1 Update Scheduling Partitions
Update scheduling partition information on minor/major frame change, by performing a scheduling
operation for the currently active scheduling partition.

1. Update the timer list.

2. Find the next active scheduling group of the current partition.

3. If an active scheduling group is present and the partition was sleeping, wake up the scheduling
partition by transitioning the current subject to the ACTIVE activity state, see Intel SDM
Vol. 3C, "24.4.2 Guest Non-Register State".

4. Set the running flag of the active subject of the next active scheduling group.

34

5. Switch to the next scheduling group by making it the active group of the scheduling partition.

6. If no active scheduling group is found, nothing (except for updating the timer list) is done.

7.4.2 Rescheduling Scheduling Partitions
Reschedule a scheduling partition due to a sleep or yield action performed by a given subject.

1. If the subject requested to sleep, set the running flag to False.

2. Then, if the subject is not active, deactivate the associated scheduling group.

3. After deactivation, check if the subject has become active in the meantime as subjects on
other cores may send events at any time. Reactivate the scheduling group in that case.

4. Find the next active scheduling group of the partition.

5. If an active group is present, set the running flag of its active subject.

6. Switch to the next scheduling group by making it the active group of the scheduling partition.

7. If there is no active group, put the scheduling partition to sleep by transitioning the current
subject to the HLT activity state, see Intel SDM Vol. 3C, "24.4.2 Guest Non-Register State".

7.4.3 Active Subject
A subject is considered active if either of the following conditions is True:

• The subject is running/has the running flag set, i.e. is not in the sleep state.

• The subject has a pending event.

• The subject has a pending interrupt.

• The subject timed event has expired.

7.4.4 Finding the next active scheduling group
Find next active scheduling group for the scheduling partition specified by ID. No_Group is re-
turned if no scheduling group is active in the given partition.

As part of the search for the next active scheduling group, the status of scheduling groups is
updated by looking at whether a subject is indicated as active and then examining if it is actually
active (e.g. running flag set or pending event etc). Depending on the determined state, the subject
is activated or deactivated.

1. Loop over all scheduling groups (maximum is 64) of the partition starting with the successor
of the currently active group.

2. Atomically examine the group activity indicator of the next group.

3. If the group is indicated as active, evaluate whether the current subject of this scheduling
group is actually active.

4. If the subject is indeed active, the next active group has been found and is returned.

5. If the subject was previously deactivated, we have to additionally remove its corresponding
scheduling group from the timer list.

6. If the subject is not active, deactivate the group which also clears the global activity indicator
of the group, see 7.4.6.

7. After deactivation, check if the subject has become active in the meantime as subjects on
other cores may send events at any time. Reactivate the scheduling group in that case and
return it as the next active group.

8. Stop search if we end up back at the current scheduling group since this means there is no
other active group in this partition.

35

7.4.5 Scheduling Group Activation
Set the global activity indicator of the scheduling group identified by partition ID and scheduling
group index. Also remove the now active scheduling group from the sorted timer list of the
scheduling partition.

7.4.6 Scheduling Group Deactivation
Clear the global activity indicator of the scheduling group identified by partition ID and scheduling
group index. Also insert the timed event of the active subject of the scheduling group into the
sorted timer list of the scheduling partition if it is not already in the list.

7.4.7 Indicate Subject Activity
Indicate that activity for a given subject has occurred by atomically setting the global scheduling
group activity indicator of the associated scheduling group of the target subject. If the subject is
running on the same CPU, only indicate activity if the target subject is the active subject of its
scheduling group. Unconditionally indicate activity for target subject running on different CPU
cores.

7.4.8 Updating Scheduling Partition Timer List
Update the timer list by scanning all inactive scheduling groups of the specified partition and
activating all groups for which the timer is expired.

7.5 Subject State Management
This section describes how the state of subjects is managed by the kernel. While the subject is
running, it may execute allowed CPU instructions until a VM exit into the kernel occurs. At
this point, the CPU stores the current execution state in the associated VMCS. To enable subject
monitors to change the state of monitored subjects, the kernel saves values from the VMCS to the
associate subject state data structure in memory (see section 4.9). Prior to executing a subject,
the subject state has to be restored back into the associated VMCS.

7.5.1 State Saving
Saving the state of a subject with given ID means that the state values are updated to the current,
corresponding VMCS field values.

1. Save VM-exit reason to Exit_Reason field.

2. Save VM-exit qualification to Exit_Qualification field.

3. Save guest interruptibility to Intr_State field.

4. Save VM-Exit instruction length to Instruction_Len field.

5. Save guest physical address to Guest_Phys_Addr field.

6. Save guest RIP to RIP field.

7. Save guest RSP to RSP field.

8. Save guest CR0 to CR0 field.

9. Save CR0 read shadow to SHADOW_CR0 field.

10. Save guest CR3 to CR3 field.

11. Save guest CR4 to CR4 field.

12. Save CR4 read shadow to SHADOW_CR4 field.

36

13. Save guest RFLAGS to RFLAGS field.

14. Save IA32_EFER to IA32_EFER field.

15. Save guest GDTR base to GDTR.Base field.

16. Save guest GDTR limit to GDTR.Limit field.

17. Save guest IDTR base to IDTR.Base field.

18. Save guest IDTR limit to IDTR.Limit field.

19. Save guest SYSENTER_CS to SYSENTER_CS field.

20. Save guest SYSENTER_EIP to SYSENTER_EIP field.

21. Save guest SYSENTER_ESP to SYSENTER_ESP field.

22. Save guest CS segment to CS field.

23. Save guest SS segment to SS field.

24. Save guest DS segment to DS field.

25. Save guest ES segment to ES field.

26. Save guest FS segment to FS field.

27. Save guest GS segment to GS field.

28. Save guest GTR segment to TR field.

29. Save guest LDTR segment to LDTR field.

30. Save subject registers to Regs field.

7.5.2 State Restoring
Restoring the state of a subject with given ID means that the current state values are written to
the corresponding VMCS fields.

1. Restore guest interruptibility from Intr_State field.

2. Restore guest RIP from RIP field.

3. Restore guest RSP from RSP field.

4. Restore guest CR0 from CR0 field.

5. Restore guest CR0 read shadown from SHADOW_CR0 field.

6. Restore guest CR4 from CR4 field.

7. Restore guest CR4 read shadow from SHADOW_CR4 field.

8. Restore guest RFLAGS from RFLAGS field.

9. Restore guest IA32_EFER from IA32_EFER field.

10. Restore guest GDTR base from GDTR.Base field.

11. Restore guest GDTR limit from GDTR.Limit field.

12. Restore guest IDTR base from IDTR.Base field.

13. Restore guest IDTR limit from IDTR.Limit field.

14. Restore guest SYSENTER_CS from SYSENTER_CS field.

15. Restore guest SYSENTER_EIP from SYSENTER_EIP field.

37

16. Restore guest SYSENTER_ESP from SYSENTER_ESP field.

17. Restore guest CS segment from CS field.

18. Restore guest SS segment from SS field.

19. Restore guest DS segment from DS field.

20. Restore guest ES segment from ES field.

21. Restore guest FS segment from FS field.

22. Restore guest GS segment from GS field.

23. Restore guest TR segment from TR field.

24. Restore guest LDTR segment from LDTR field.

25. Restore subject registers from Regs field.

7.5.3 State Resetting
Resetting the state of a subject with given ID means that all state values are set to those specified
in the policy. Fields that are not set by the policy are cleared to zero, except for RFLAGS which
is initialized to Constants.RFLAGS_Default_Value.

7.5.4 State Filtering
Filtering the state of a subject with given ID means that the state values fulfill the invariants
specified by the Valid_State function:

1. Force CR4.MCE bit to be set to ensure Machine Check Exceptions are active.

7.6 Crash Audit
7.6.1 Initialization
Initialization of the Crash Audit facility puts the crash audit store in a well-defined state in order
to be ready for the addition of new audit entries in case of a crash.

1. Initialize the audit instance to the well-known empty state if the crash audit does not have
a matching version number.

2. Increase the boot counter but retain current audit data, if it is already initialized.

7.6.2 Allocation
Allocate a global crash audit entry termed slot. For a full description of the crash audit entry data
structure see section 7.8.14.

1. Initialize the audit entry.

2. Atomically get and increment the audit slot index. If no free audit slot is available, halt
execution.

3. Set index of current audit slot.

4. Clear crash dump fields of current audit slot.

5. Set crash data APIC ID to this CPU.

6. Set crash data timestamp to the current TSC value.

38

7.6.3 Finalization
Finalize the given audit slot.

1. Set active crash dump count to the last index if the next slot index is too large.

2. Set active crash dump count to the current slot index.

3. Set the version string in the header to the current version.

4. Increase the generation.

5. Increase the crash counter.

6. Pause for a given amount before rebooting the system to enable potentially simultaneously
faulting cores to finish writing their crash audit entries.

7.7 VMCS Management
This section describes how the VMCS structures associated with subjects are managed by the ker-
nel. A VMCS controls the execution environment of a subject, e.g. what hardware features/privi-
leged instructions a subject may execute etc. While transitioning between VMX root and non-root
mode, the hardware automatically saves and restores the state to/from the current VMCS depend-
ing on how it has been configured. Part of the kernel’s duties is to set up the VMCS according to
the subject specification in the system policy.

7.7.1 Enabling VMX
Enable the VMX feature if it is not already enabled, e.g. by the BIOS. To ensure that the VMX
feature control MSR (IA32_FEATURE_CONTROL) is setup correctly, this action is only performed
after checking the validity of the overall system state.

1. Read the current value of the IA32_FEATURE_CONTROL MSR.

2. If the lock bit is not set, then explicitly disable ’VMX in SMX operation’ by clearing bit 1.

3. Then, enable ’VMX outside SMX operation’ by setting bit 2.

4. Finally, lock the IA32_FEATURE_CONTROL register by setting the locked flag and writing
the value back to the MSR.

7.7.2 Entering VMX root mode
Bring CPU into VMX root operation. First, set CR4.VMXE bit. Then, execute vmxon with the
address of the VMXON region assigned to the CPU. VMXON regions are laid out in memory
consecutively like an array and each CPU uses its CPU_ID as index. VMXON regions are not
mapped into the kernel address space, as they are cleared and initialized during boot in assembly
(init.S). No further access is required. The requirements for executing the vmxon instruction
are assured when the VMX feature is enabled see 7.7.1. For further reference see Intel SDM Vol.
3C, "23.7 Enabling and Entering VMX Operation".

7.7.3 VMCS Reset
Resetting a VMCS located at a specific physical memory address associated with a specific subject
means clearing all data and initializing the VMCS for (re)use.

1. Make the VMCS inactive, not current and clear to force the CPU to synchronize any cached
data to the VMCS memory designated by the physical memory address.

2. Read IA32_VMX_BASIC MSR to determine the VMCS revision identifier of the processor.

3. Set VMCS revision ID field to CPU value and the abort indicator to 0. Note, that bit 31 of
the MSR is always 0 which means, the shadow-VMCS indicator will always be cleared, see
Intel SDM Vol. 3D, "A.1 Basic VMX Information".

39

4. Set all remaining VMCS data to zero, see Intel SDM Vol. 3C, "24.2 Format of the VMCS
Region".

5. Execute VMCLEAR instruction again to initialize implementation-specific information in
the VMCS region, see Intel SDM Vol. 3C, "24.11.3 Initializing a VMCS".

7.7.4 VM-Control Fields Setup
Setup control fields of the currently active VMCS. These fields govern VMX non-root operation
as well as VM Exit and Entry behavior.

1. Read Default0 and Default1 from the IA32_VMX_TRUE_PINBASED_CTLS MSR. Combine
them with the policy-defined value by setting the defaults for reserved control bits according
to Intel SDM Vol. 3D, "A.3.1 Pin-Based VM-Execution Controls". Then, set the Pin-Based
VM-Execution controls by writing the value to the corresponding VMCS field.

2. Read Default0 and Default1 from the IA32_VMX_TRUE_PROCBASED_CTLS MSR. Combine
them with the policy-defined value by setting the defaults for reserved control bits according
to Intel SDM Vol. 3D, "A.3.2 Primary Processor-Based VM-Execution Controls". Then,
set the Processor-Based VM-Execution controls by writing the value to the corresponding
VMCS field.

3. Read Default0 and Default1 from the IA32_VMX_PROCBASED_CTLS2 MSR. Combine them
with the policy-defined value by setting the defaults for reserved control bits according to Intel
SDM Vol. 3D, "A.3.3 Secondary Processor-Based VM-Execution Controls". Then, set the
secondary processor-based VM-Execution controls by writing the value to the corresponding
VMCS field.

4. Write policy-defined exception bitmap value to the corresponding VMCS field.

5. Write policy-defined CR0 and CR4 mask values to the corresponding VMCS fields.

6. Explicitly set CR3-target count to 0 to always force CR3-load exiting, by writing zero to the
corresponding VMCS field.

7. Write policy-defined I/O bitmap address to the corresponding VMCS fields. I/O bitmap B
is expected to be located in the next memory page after bitmap A (which is enforced by the
validtor).

8. Write policy-defined MSR bitmap address to the corresponding VMCS field.

9. Write policy-defined MSR store address to the VM-Exit MSR store and the VM-Entry MSR
load address VMCS fields. Also set the VM-Exit MSR store and VM-Entry load count fields
to the policy-defined MSR count.

10. Read Default0 and Default1 from the IA32_VMX_TRUE_EXIT_CTLS MSR. Combine them
with the policy-defined value by setting the defaults for reserved control bits according to
Intel SDM Vol. 3D, "A.4 VM-Exit Controls". Then, set the VM-Exit controls by writing the
value to the corresponding VMCS field.

11. Read Default0 and Default1 from the IA32_VMX_TRUE_ENTRY_CTLS MSR. Combine them
with the policy-defined value by setting the defaults for reserved control bits according to
Intel SDM Vol. 3D, "A.5 VM-Entry Controls". Then, set the VM-Entry controls by writing
the value to the corresponding VMCS field.

7.7.5 Host-State Fields Setup
Setup host-state fields of the currently active VMCS. Processor state is loaded from these fields on
every VM exit, see Intel SDM Vol. 3C, "27.5 Loading Host State".

1. Set host CS segment selector field to SEL_KERN_CODE.

2. Set host DS segment selector field to SEL_KERN_DATA.

40

3. Set host ES segment selector field to SEL_KERN_DATA.

4. Set host SS segment selector field to SEL_KERN_DATA.

5. Set host FS segment selector field to SEL_KERN_DATA.

6. Set host FS segment selector field to SEL_KERN_DATA.

7. Set host TR segment selector field to SEL_TSS.

8. Set host CR0 field to current control register 0 value.

9. Set host CR3 field to current control register 3 value.

10. Set host CR4 field to current control register 4 value.

11. Set host GDTR base address field to current GDT base address.

12. Set host IDT base address field to current IDT base address.

13. Set host TR base address field to current TSS base address.

14. Set host RSP field to top of kernel stack as specified by the policy.

15. Set host RIP field to exit address which points to vmx_exit_hander declared in assembly.

16. Set host IA32_EFER field to current IA32_EFER value.

7.7.6 Guest-State Fields Setup
Setup guest-state fields of the currently active VMCS. Processor state is loaded from these fields
on every VM entry (Intel SDM Vol. 3C, "27.3 Saving Guest State") and stored on very VM exit
(Intel SDM Vol. 3C, "26.3.2 Loading Guest State").

1. Set VMCS link pointer field to 16#ffffffff_ffffffff# since "VMCS shadowing" is not
used, see Intel SDM Vol. 3C, "24.4.2 Guest Non-Register State".

2. Set guest CR3 field to policy-defined PML4 address value.

3. Set EPT pointer field to policy-defined address value.

7.8 Packages
7.8.1 Muinterrupts
The Muen pending interrupts mechanism is used to keep track of pending interrupts of a subject.
An interrupt with a given number N is considered pending if the bit at position N is set. This
package contains declarations for the pending interrupts data structures.

7.8.2 Muschedinfo
The Subject Scheduling Information (schedinfo) mechanism exports coarse grained scheduling in-
formation to subjects. More specifically, the start and end CPU ticks of the current minor frame
are exported and made accessible to subjects.

7.8.3 Mutimedevents
The Muen timed events mechanism implements a synthetic timer which can be used by subjects
to trigger events when a specified timestamp has passed. This package contains declarations for
the timed event data structures.

7.8.4 SK
Top-level package defining common types.

41

7.8.5 SK.Apic
This package contains subprograms to interact with the local APIC, see Intel SDM Vol. 3A,
"Chapter 10 Advanced Programmable Interrupt Controller (APIC)" [7]. The APIC is a per-CPU
interrupt controller which is required for interrupt processing and sending of interprocessor Inter-
rupts (IPIs).

Additionally, it provides the information if a CPU is the bootstrap processor (BSP), which
initially brings up the system. Muen programs the APIC in x2APIC mode.

7.8.6 SK.Atomics
This package provides atomic types and subprograms to operate on those types. They are suitable
for concurrent access, e.g. from different CPU cores.

7.8.7 SK.Barriers
This package implements a sense barrier which can be used as a synchronization primitive.

7.8.8 SK.Bitops
Utility package providing helper functions for bit operations on 64-bit numeric types.

7.8.9 SK.CPU
Package providing access to low-level CPU instructions.

7.8.10 SK.CPU.VMX
This package implements subprograms corresponding to low-level Intel VT-x instructions. They
are required for the management of VMX data structures such as VMXON and VMCS regions,
see Intel SDM Vol. 3C, "Chapter 30 VMX Instruction Reference" [7].

7.8.11 SK.CPU_Info
This package provides CPU identification information which allows the kernel to uniquely identify
on which CPU it is executing.

7.8.12 SK.Constants
Package containing constant declarations for various numeric values.

7.8.13 SK.Crash_Audit
The Crash Audit facility records information in case an unrecoverable error occurs during runtime.
Several crash audit records can be allocated to handle the case where multiple CPUs encounter a
crash at the same instant. The information is written to an uncached memory region which can
be evaluated after rebooting the system. Examination of the audit information should be powerful
enough to determine the cause of the crash.

7.8.14 SK.Crash_Audit_Types
This package specifies all data types and records related to the crash audit facility.

7.8.15 SK.Delays
Provides facilities to delay execution for a specified duration.

7.8.16 SK.Descriptors
Package providing types and subprograms to setup Interrupt Descriptor Table (IDT).

42

7.8.17 SK.Dump
Utility package providing helper functions for printing debug information. Note: implementation
is only present in debug builds. In release versions this package is empty.

7.8.18 SK.Exceptions
Package providing types for x86 exception handling/interrupt service routines.

7.8.19 SK.FPU
This package contains subprograms to interact with the FPU, i.e. to check its state, enable it
during startup and save as well as restore the hardware FPU state to/from memory.

7.8.20 SK.IO
This package provides low-level input and output operations for interacting with I/O ports.

7.8.21 SK.IO_Apic
This package contains subprograms to interact with the I/O APIC, see Intel SDM Vol. 3A,
"Chapter 10 Advanced Programmable Interrupt Controller (APIC)" [7]. The I/O APIC is part of
the chipset and it receives external interrupts from the system and devices. It routes them to the
local APICs according to the Interrupt Routing Table which is programmed as specified by the
system policy.

7.8.22 SK.Interrupt_Tables
Package providing subprograms to setup interrupt handling by means of Global Descriptor and
Interrupt Descriptor Tables as well as Task-State Segment.

7.8.23 SK.Interrupts
This package provides procedures to disable the legacy Programmable Interrupt Controller (PIC)
and the Programmable Interrupt Timer (PIT). Moreover, an interrupt handler which is invoked if
an exception occurs during kernel execution is provided.

7.8.24 SK.KC
Kernel debug console implementation. Note: implementation is only present in debug builds. In
release versions this package is empty.

7.8.25 SK.Kernel
This package implements kernel initialization which is the initial entry point from the early boot
code into the SPARK kernel implementation. It also contains the VM exit handler procedure
which implements the main kernel processing loop.

7.8.26 SK.Locks
This package implements a spinlock which can be used to synchronize access to a shared resource
like the I/O APIC or the kernel console in debug builds.

7.8.27 SK.MCE
This package deals with Machine-Check Architecture and Exception (MCA, MCE), see Intel SDM
Vol. 3B, "Chapter 15 Machine-Check Architecture" [7]. The MCA and MCE mechanisms allow
the detection of hardware errors.

43

7.8.28 SK.MCU
This package provides Intel microcode update (MCU) facilities. This package does nothing if the
policy does not specify an Intel microcode update blob.

7.8.29 SK.MP
This package provides cross-core CPU synchronization facilities.

7.8.30 SK.Power
This package provides facilities for rebooting or powering off the system.

7.8.31 SK.Scheduler
This package implements the fixed-cyclic scheduler and additional, required functionality.

7.8.32 SK.Scheduling_Info
This package provides access to per-partition scheduling information.

7.8.33 SK.Strings
Utility package providing helper functions for converting numeric values to strings. Note: imple-
mentation is only present in debug builds. In release versions this package is empty.

7.8.34 SK.Subjects
This package provides facilities for managing subject states. Each subject has a corresponding
in-memory representation of its current execution state which is synchronized with virtualization
data structures used by hardware when executing a subject.

7.8.35 SK.Subjects.Debug
Utility package providing helper function for printing subject state debug information. Note:
implementation is only present in debug builds. In release versions this package is empty.

7.8.36 SK.Subjects_Events
This package provides facilities for managing subject target events. Each subject has a fixed
number of events that can be marked as pending. Events are processed prior to resuming the
execution of the associated subject. Pending events are marked by their ID, which is used as a
lookup index into the static policy event array.

7.8.37 SK.Subjects_Interrupts
This package provides facilities for managing subject interrupts. An interrupt is identified by the
vector number and can be marked as pending. Pending interrupts are injected upon resumption
of a subject.

7.8.38 SK.Subjects_MSR_Store
This package provides facilities for managing subject MSR storage areas. The MSR storage area
specifies which MSRs must be saved/restored by the hardware when entering/exiting a subject.

7.8.39 SK.System_State
This package provides subprograms to check the state and features of the hardware.

44

7.8.40 SK.Task_State
This package implements types and subprograms to manage Task-State Segments.

7.8.41 SK.Tau0_Interface
This package provides access to the Tau0 runtime interface.

7.8.42 SK.Timed_Events
This package provide facilities to manage timed events of each subject. Timed events allow a
subject to trigger a policy defined event at a given time specified as CPU tick value.

7.8.43 SK.VMX
This package implements subprograms to enter VMX root operation as well as for higher level
access and management of VMX structures such as VMCS and VMXON regions, see Intel SDM
Vol. 3C, "Chapter 24 Virtual Machine Control Structures" [7].

7.8.44 SK.VTd
This package provides facilities to interact with the IOMMU as specified by Intel [6]. It is required
for DMA and Interrupt Remapping to isolate hardware devices according to the system policy.

7.8.45 SK.VTd.Debug
Utility package providing debug functions for setting up and handling VT-d fault interrupts, i.e.
printing VT-d fault debug information. Note: implementation is only present in debug builds. In
release versions this package is empty.

7.8.46 SK.VTd.Dump
Utility package providing helper functions for printing VT-d debug information. Note: implemen-
tation is only present in debug builds. In release versions this package is empty.

7.8.47 SK.VTd.Interrupts
This package provides a procedure to setup I/O APIC IRQ routing when IOMMU Interrupt
Remapping is enabled.

7.8.48 SK.Version
Muen version information.

7.8.49 Skp
The Skp package hierarchy is a codified static representation of the system policy. All the values
are derived from the system policy and parameterize the Muen SK on the source level.

This package contains numeric constants and range type definitions derived from the system
policy.

7.8.50 Skp.Events
This package contains subject source/target event as well as trap definitions as specified by the
system policy.

45

7.8.51 Skp.Hardware
This package contains constant definitions for hardware-dependent I/O devices operated by the
kernel. The values are derived from the system policy.

7.8.52 Skp.IOMMU
This package contains constant definitions and subprograms to interface with IOMMUs. The
generation of the code is necessary because there exist hardware platforms with multiple IOMMUs
that have different register memory layouts, i.e. Fault Reporting and IOTLB Registers offsets.
The necessary values are taken from the system policy.

7.8.53 Skp.Interrupts
This package contains IRQ and vector routing definitions as specified by the system policy.

7.8.54 Skp.Kernel
This package contains virtual addresses of various kernel data structure mappings as specified by
the system policy.

7.8.55 Skp.Scheduling
This package contains scheduling plans, minor frame synchronization barrier configurations and
subject to scheduling partition as well as scheduling group ID mappings as specified by the system
policy.

7.8.56 Skp.Subjects
This package contains subject specifications as defined by the system policy. The given values
define the VMX controls of each subject and establish their initial state according to the policy.

7.8.57 X86_64
Package declaring abstract x86/64 system state. Note: only used for proofs.

46

Chapter 8

Verification

This section describes the formal methods and techniques applied to the verification of Muen.

8.1 SPARK
SPARK is the primary technology used for the formal verification of Muen and particularly trust-
worthy components such as τ0. It enables data and information flow analysis as well as the proof
of absence of runtime errors. The necessary proofs are produced by the SPARK GNATprove tools
which in turn use automated theorem provers, like the Z3 SMT solver1 for example. Application
of the GNATprove tools guarantees that the SPARK language rules are adhered to at all time and
that the analyzed source code is valid.

The proof of advanced functional features is realized with the help of the interactive theorem
prover Isabelle2. Abstract properties are formalized in Isabelle/HOL. These possibly complex,
external specifications are linked to the SPARK implementation by so-called Ghost Code. The
GNATprove tool generates verification conditions in the Why3 language, which are imported into
Isabelle by means of a driver. This way, the correspondence of the SPARK source code to an
abstract, formal specification can be shown.

The interaction of the tools used for the verification is shown schematically in figure 8.1.

Source Files
(*.ads, *.adb) GNATprove Why3 Files

(*.mlw) Why3

Isabelle-Why3
Files (*.xml)

SMT Files

Isabelle-Why3
Wrapper

SMT Solver

Theory Files
(*.thy)Isabelle-Why3

Figure 8.1: Toolchain for the verification of SPARK programs.

8.2 Verification Conditions Summary (SPARK 2014)
This section shows the summary of the verification results for all checks performed by SPARK/G-
NATprove in the Muen kernel project. For a detailed description of each line of the summary table
please refer to the SPARK 2014 user guide 3.

1https://github.com/Z3Prover/z3
2https://isabelle.in.tum.de
3https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_view_gnatprove_

output.html#the-analysis-results-summary-file

47

https://github.com/Z3Prover/z3
https://isabelle.in.tum.de
https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_view_gnatprove_output.html#the-analysis-results-summary-file
https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_view_gnatprove_output.html#the-analysis-results-summary-file

Total Flow CodePeer Provers Justified Unproved

Data Dependencies 144 144 0 0 0 0
Flow Dependencies 92 92 0 0 0 0
Initialization 233 227 0 0 6 0
Non Aliasing 2 2 0 0 0 0
Runtime Checks 223 0 0 222 1 0
Assertions 0 0 0 0 0 0
Functional Contracts 69 0 0 69 0 0
LSP Verification 0 0 0 0 0 0

Totals 765 467 0 291 7 0

48

Chapter 9

Appendix

9.1 Crash Audit data structure

1 --
-- Copyright (C) 2017 Reto Buerki <reet@codelabs.ch>

3 -- Copyright (C) 2017 Adrian-Ken Rueegsegger <ken@codelabs.ch>
--

5 -- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by

7 -- the Free Software Foundation, either version 3 of the License, or
-- (at your option) any later version.

9 --
-- This program is distributed in the hope that it will be useful,

11 -- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

13 -- GNU General Public License for more details.
--

15 -- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <http://www.gnu.org/licenses/>.

17 --

19 with SK.Exceptions;

21 --D @Interface
--D This package specifies all data types and records related to the crash audit

23 --D facility.
package SK.Crash_Audit_Types

25 is

27 type Bit_3_Type is range 0 .. 2 ** 3 - 1
with

29 Size => 3;
type Bit_4_Type is range 0 .. 2 ** 4 - 1

31 with
Size => 4;

33 type Bit_5_Type is range 0 .. 2 ** 5 - 1
with

35 Size => 5;
type Bit_6_Type is range 0 .. 2 ** 6 - 1

37 with
Size => 6;

39

--D @Interface
41 --D The magic constant is used to identify the crash audit data structure

--D and format. It must be adjusted whenever the audit record format is
43 --D changed in an incompatible way. The two highest bytes are therefore

--D used as counter.
45 Crash_Magic : constant := 16#0100_0df7_50d5_0e9a#;

47 subtype Version_Str_Range is Positive range 1 .. 64;

49 --D @Interface
--D The version string is defined as a fixed-length string of size 64.

51 type Version_String_Type is new String (Version_Str_Range)

49

with
53 Size => Version_Str_Range’Last * 8;

55 Null_Version_String : constant Version_String_Type := (others => ASCII.NUL);

57 --D @Interface
--D This constant specifies the maximum number of audit slots which can be

59 --D allocated/stored by the crash audit.
Max_Dumps : constant := 3;

61

type Dumpdata_Length is range 0 .. Max_Dumps
63 with

Size => 8;
65

subtype Dumpdata_Index is Dumpdata_Length range 1 .. Dumpdata_Length’Last;
67

Header_Type_Size : constant := 8 + 64 + (3 * 8) + 4 + 2 + 1 + 1;
69

--D @Interface
71 --D The crash audit header specifies meta data required for the management

--D of crash audit data.
73 type Header_Type is record

--D @Interface
75 --D Version and format identifier of crash audit data.

Version_Magic : Interfaces.Unsigned_64;
77 --D @Interface

--D String representation of version identifier.
79 Version_String : Version_String_Type;

--D @Interface
81 --D Generation counter used to identify if crash audit contains active

--D data, i.e. when Generation = Boot_Count.
83 Generation : Interfaces.Unsigned_64;

--D @Interface
85 --D Number of system boots since last power-off/cold boot.

Boot_Count : Interfaces.Unsigned_64;
87 --D @Interface

--D Number of observed crashes record by crash audit.
89 Crash_Count : Interfaces.Unsigned_64;

--D @Interface
91 --D CRC32 checksum (currently unused).

Crc32 : Interfaces.Unsigned_32;
93 Padding : Interfaces.Unsigned_16;

--D @Interface
95 --D Number of allocated crash audit entries.

Dump_Count : Dumpdata_Length’Base;
97 --D @Interface

--D Maximum number of available crash audit entries.
99 Max_Dump_Count : Dumpdata_Index’Base;

end record
101 with

Pack,
103 Size => Header_Type_Size * 8;

105 Null_Header : constant Header_Type;

107 ---------------------
-- Crash Reasons --

109 ---------------------

111 type Reason_Type is new Interfaces.Unsigned_64;

113 Reason_Undefined : constant Reason_Type := 16#0000#;

115 -- Exceptions.

117 Hardware_Exception : constant Reason_Type := 16#1000#;
Hardware_VMexit_NMI : constant Reason_Type := 16#1001#;

119 Hardware_VMexit_MCE : constant Reason_Type := 16#1002#;
Hardware_VMentry_MCE : constant Reason_Type := 16#1003#;

121

-- Subject errors.
123

Subj_System_Panic : constant Reason_Type := 16#2000#;

50

125 Subj_Unknown_Trap : constant Reason_Type := 16#2001#;

127 -- Init failure.

129 System_Init_Failure : constant Reason_Type := 16#3000#;

131 -- VT-x errors.

133 VTx_VMX_Root_Mode_Failed : constant Reason_Type := 16#4000#;
VTx_VMX_Vmentry_Failed : constant Reason_Type := 16#4001#;

135 VTx_VMCS_Clear_Failed : constant Reason_Type := 16#4002#;
VTx_VMCS_Load_Failed : constant Reason_Type := 16#4003#;

137 VTx_VMCS_Write_Failed : constant Reason_Type := 16#4004#;
VTx_VMCS_Read_Failed : constant Reason_Type := 16#4005#;

139

-- VT-d errors.
141

VTd_Unable_To_Set_DMAR_Root_Table : constant Reason_Type := 16#5000#;
143 VTd_Unable_To_Invalidate_Ctx_Cache : constant Reason_Type := 16#5001#;

VTd_Unable_To_Flush_IOTLB : constant Reason_Type := 16#5002#;
145 VTd_Unable_To_Enable_Translation : constant Reason_Type := 16#5003#;

VTd_Unable_To_Set_IR_Table : constant Reason_Type := 16#5004#;
147 VTd_Unable_To_Block_CF : constant Reason_Type := 16#5005#;

VTd_Unable_To_Enable_IR : constant Reason_Type := 16#5006#;
149 VTd_Unable_To_Disable_QI : constant Reason_Type := 16#5007#;

151 subtype Subj_Reason_Range is Reason_Type range
Subj_System_Panic .. Subj_Unknown_Trap;

153

subtype VTx_Reason_Range is Reason_Type range
155 VTx_VMX_Root_Mode_Failed .. VTx_VMCS_Read_Failed;

157 subtype VTd_Reason_Range is Reason_Type range
VTd_Unable_To_Set_DMAR_Root_Table .. VTd_Unable_To_Disable_QI;

159

--D @Interface
161 --D Bitmap identifying which information contexts contain valid crash

--D information.
163 type Validity_Flags_Type is record

Ex_Context : Boolean;
165 MCE_Context : Boolean;

Subj_Context : Boolean;
167 Init_Context : Boolean;

VTx_Context : Boolean;
169 Padding : Bit_3_Type;

end record
171 with

Pack,
173 Size => 8;

175 Null_Validity_Flags : constant Validity_Flags_Type;

177 Ex_Ctx_Size : constant := Exceptions.Isr_Ctx_Size + 3 * 8;

179 --D @Interface
--D Exception execution environment state.

181 type Exception_Context_Type is record
--D @Interface

183 --D Interrupt Service Routine execution environment state on exception
--D occurrence.

185 ISR_Ctx : Exceptions.Isr_Context_Type;
--D @Interface

187 --D Control register values on exception occurrence.
CR0, CR3, CR4 : Interfaces.Unsigned_64;

189 end record
with

191 Pack,
Size => Ex_Ctx_Size * 8;

193

Null_Exception_Context : constant Exception_Context_Type;
195

MCE_Max_Banks : constant := 20;
197

51

type Bank_Index_Ext_Range is new Byte range 0 .. MCE_Max_Banks
199 with

Size => 8;
201

subtype Bank_Index_Range is Bank_Index_Ext_Range range
203 0 .. MCE_Max_Banks - 1;

205 type Banks_Array is array (Bank_Index_Range) of Interfaces.Unsigned_64
with

207 Size => MCE_Max_Banks * 8 * 8;

209 MCE_Ctx_Size : constant := 8 + 1 + 3 * MCE_Max_Banks * 8;

211 --D @Interface
--D Machine-Check Exception execution environment state.

213 type MCE_Context_Type is record
--D @Interface

215 --D Value of Machine-Check global status register on MCE occurrence.
MCG_Status : Interfaces.Unsigned_64;

217 --D @Interface
--D Number of present MCE reporting banks.

219 Bank_Count : Bank_Index_Ext_Range’Base;
--D @Interface

221 --D Status register value for each present MCE bank.
MCi_Status : Banks_Array;

223 --D @Interface
--D Address of the memory location that produced the MCE for each present

225 --D MCE bank.
MCi_Addr : Banks_Array;

227 --D @Interface
--D Address of the memory location that produced the MCE for each present

229 --D MCE bank.
MCi_Misc : Banks_Array;

231 end record
with

233 Pack,
Size => MCE_Ctx_Size * 8;

235

Null_MCE_Context : constant MCE_Context_Type;
237

type Subj_Ctx_Validity_Flags_Type is record
239 Intr_Info : Boolean;

Intr_Error_Code : Boolean;
241 Padding : Bit_6_Type;

end record
243 with

Pack,
245 Size => 8;

247 Null_Subj_Ctx_Validity_Flags : constant Subj_Ctx_Validity_Flags_Type;

249 Subj_Ctx_Size : constant
:= 2 + 1 + 1 + 4 + 4 + Subj_State_Size + XSAVE_Legacy_Header_Size;

251

--D @Interface
253 --D Subject execution state.

type Subj_Context_Type is record
255 --D @Interface

--D ID of subject being executed on crash occurrence.
257 Subject_ID : Interfaces.Unsigned_16;

--D @Interface
259 --D Bitmap designating context fields containing valid audit data.

Field_Validity : Subj_Ctx_Validity_Flags_Type;
261 Padding : Interfaces.Unsigned_8;

--D @Interface
263 --D Subject interrupt information.

Intr_Info : Interfaces.Unsigned_32;
265 --D @Interface

--D Subject interrupt error code.
267 Intr_Error_Code : Interfaces.Unsigned_32;

--D @Interface
269 --D Subject state descriptor containing the execution state like register

--D values etc.

52

271 Descriptor : Subject_State_Type;
FPU_Registers : XSAVE_Legacy_Header_Type;

273 end record
with

275 Pack,
Size => Subj_Ctx_Size * 8;

277

Null_Subj_Context : constant Subj_Context_Type;
279

type VTx_Ctx_Validity_Flags_Type is record
281 Addr_Active_Valid : Boolean;

Addr_Request_Valid : Boolean;
283 Field_Valid : Boolean;

Field_Value_Valid : Boolean;
285 Instrerr_Valid : Boolean;

Padding : Bit_3_Type;
287 end record

with
289 Pack,

Size => 8;
291

Null_VTx_Ctx_Validity_Flags : constant VTx_Ctx_Validity_Flags_Type;
293

VTx_Ctx_Size : constant := 1 + 3 * 8 + 2 + 1;
295

--D @Interface
297 --D VT-x execution information.

type VTx_Context_Type is record
299 --D @Interface

--D Bitmap designating context fields containing valid audit data.
301 Field_Validity : VTx_Ctx_Validity_Flags_Type;

--D @Interface
303 --D Physical address of VMCS that was active on crash occurrence.

VMCS_Address_Active : Interfaces.Unsigned_64;
305 --D @Interface

--D Physical address of VMCS that was operated upon on crash occurrence.
307 VMCS_Address_Request : Interfaces.Unsigned_64;

--D @Interface
309 --D Identifier of VMCS Field that was operated upon on crash occurrence,

--D see Intel SDM Vol. 3D, "Appendix B Field Encoding in VMCS".
311 VMCS_Field : Interfaces.Unsigned_16;

--D @Interface
313 --D Value of VMCS Field that was operated upon on crash occurrence.

VMCS_Field_Value : Interfaces.Unsigned_64;
315 --D @Interface

--D VM instruction error number, see Intel SDM Vol. 3C,
317 --D "30.4 VM Instruction Error Numbers".

VM_Instr_Error : Interfaces.Unsigned_8;
319 end record

with
321 Pack,

Size => VTx_Ctx_Size * 8;
323

Null_VTx_Context : constant VTx_Context_Type;
325

Sys_Init_Ctx_Size : constant := 2;
327

--D @Interface
329 --D System initialization validity check information.

type System_Init_Context_Type is record
331 --D @Interface

--D VMX operation supported by hardware.
333 VMX_Support : Boolean;

--D @Interface
335 --D VMX operation enabled or feature control is not locked.

Not_VMX_Disabled_Locked : Boolean;
337 --D @Interface

--D CPU is in protected mode.
339 Protected_Mode : Boolean;

--D @Interface
341 --D Paging is enabled

Paging : Boolean;
343 --D @Interface

53

--D CPU is in IA32-e (long) mode.
345 IA_32e_Mode : Boolean;

--D @Interface
347 --D X2Apic supported by hardware.

Apic_Support : Boolean;
349 --D @Interface

--D CR0 value is valid for VMX operation on this hardware.
351 CR0_Valid : Boolean;

--D @Interface
353 --D CR4 value is valid for VMX operation on this hardware.

CR4_Valid : Boolean;
355 --D @Interface

--D Virtual-8086 mode disabled.
357 Not_Virtual_8086 : Boolean;

--D @Interface
359 --D Hardware has Invariant TSC.

Invariant_TSC : Boolean;
361 Padding : Bit_6_Type;

end record
363 with

Pack,
365 Size => Sys_Init_Ctx_Size * 8;

367 Null_System_Init_Context : constant System_Init_Context_Type;

369 FPU_Init_Ctx_Size : constant := 1;

371 --D @Interface
--D FPU initialization validity check information.

373 type FPU_Init_Context_Type is record
--D @Interface

375 --D XSAVE instruction supported by hardware.
XSAVE_Support : Boolean;

377 --D @Interface
--D XSAVE area fits in subject FPU state memory region.

379 Area_Size : Boolean;
Padding : Bit_6_Type;

381 end record
with

383 Pack,
Size => FPU_Init_Ctx_Size * 8;

385

Null_FPU_Init_Context : constant FPU_Init_Context_Type;
387

MCE_Init_Ctx_Size : constant := 1;
389

--D @Interface
391 --D Machine-Check exception initialization validity check information.

type MCE_Init_Context_Type is record
393 --D @Interface

--D Machine-Check Exceptions supported by hardware.
395 MCE_Support : Boolean;

--D @Interface
397 --D Machine-Check Architecture supported by hardware.

MCA_Support : Boolean;
399 --D @Interface

--D Number of MCE error reporting banks is supported.
401 Bank_Count_OK : Boolean;

Padding : Bit_5_Type;
403 end record

with
405 Pack,

Size => MCE_Init_Ctx_Size * 8;
407

Null_MCE_Init_Context : constant MCE_Init_Context_Type;
409

VTd_IOMMU_Status_Size : constant := 1;
411

--D @Interface
413 --D VT-d initialization validity check information.

type VTd_IOMMU_Status_Type is record
415 --D @Interface

--D IOMMU version is supported.

54

417 Version_Support : Boolean;
--D @Interface

419 --D IOMMU supports a large enough number of domains.
Nr_Domains_OK : Boolean;

421 --D @Interface
--D IOMMU actual guest address width is supported.

423 AGAW_Support : Boolean;
--D @Interface

425 --D IOMMU supports interrupt remapping.
IR_Support : Boolean;

427 --D @Interface
--D IOMMU supports extended interrupt mode.

429 EIM_Support : Boolean;
--D @Interface

431 --D Number of fault reporting registers matches expected value.
NFR_Match : Boolean;

433 --D @Interface
--D Offset of fault reporting registers matches expected value.

435 FR_Offset_Match : Boolean;
--D @Interface

437 --D Offset of IOTLB invalidate register matches expected value.
IOTLB_Inv_Offset_Match : Boolean;

439 end record
with

441 Pack,
Size => VTd_IOMMU_Status_Size * 8;

443

Null_VTd_IOMMU_Status : constant VTd_IOMMU_Status_Type;
445

VTd_Max_IOMMU_Status : constant := 8;
447

VTd_IOMMU_Status_Array_Size : constant
449 := VTd_Max_IOMMU_Status * VTd_IOMMU_Status_Size;

451 type VTd_IOMMU_Status_Array is array (1 .. VTd_Max_IOMMU_Status) of
VTd_IOMMU_Status_Type

453 with
Pack,

455 Size => VTd_IOMMU_Status_Array_Size * 8;

457 Null_VTd_IOMMU_Status_Array : constant VTd_IOMMU_Status_Array;

459 VTd_Init_Context_Type_Size : constant := 1 + VTd_IOMMU_Status_Array_Size;

461 --D @Interface
--D VT-d initialization check information for all present IOMMUs.

463 type VTd_Init_Context_Type is record
--D @Interface

465 --D Number of reported IOMMUs.
IOMMU_Count : Byte;

467 --D @Interface
--D Status of each reported IOMMU.

469 Status : VTd_IOMMU_Status_Array;
end record

471 with
Pack,

473 Size => VTd_Init_Context_Type_Size * 8;

475 Null_VTd_Init_Context : constant VTd_Init_Context_Type;

477 Init_Ctx_Size : constant
:= (Sys_Init_Ctx_Size + FPU_Init_Ctx_Size

479 + MCE_Init_Ctx_Size + VTd_Init_Context_Type_Size);

481 --D @Interface
--D Kernel initialization check information.

483 type Init_Context_Type is record
Sys_Ctx : System_Init_Context_Type;

485 FPU_Ctx : FPU_Init_Context_Type;
MCE_Ctx : MCE_Init_Context_Type;

487 VTd_Ctx : VTd_Init_Context_Type;
end record

489 with

55

Pack,
491 Size => Init_Ctx_Size * 8;

493 Null_Init_Context : constant Init_Context_Type;

495 Dumpdata_Size : constant := 8 + 8 + 1 + 1 + Ex_Ctx_Size + MCE_Ctx_Size
+ Subj_Ctx_Size + Init_Ctx_Size + VTx_Ctx_Size;

497

--D @Interface
499 --D The dump data record type specifies a single crash audit entry.

type Dumpdata_Type is record
501 --D @Interface

--D TSC timestamp when the audit record was written.
503 TSC_Value : Interfaces.Unsigned_64;

--D @Interface
505 --D Reason designating the cause of the crash.

Reason : Reason_Type;
507 --D @Interface

--D ID of CPU on which the crash occurred.
509 APIC_ID : Interfaces.Unsigned_8;

--D @Interface
511 --D Bitmap designating which contexts contain further valid data.

Field_Validity : Validity_Flags_Type;
513 --D @Interface

--D Audit data related to exception occurrence.
515 Exception_Context : Exception_Context_Type;

--D @Interface
517 --D Audit data related to Machine-Check Exception.

MCE_Context : MCE_Context_Type;
519 --D @Interface

--D Audit data related to subject, which was executed at the time of the crash.
521 Subject_Context : Subj_Context_Type;

--D @Interface
523 --D Audit data related to system initialization errors.

Init_Context : Init_Context_Type;
525 --D @Interface

--D Audit data related to fatal VT-x errors.
527 VTx_Context : VTx_Context_Type;

end record
529 with

Pack,
531 Size => Dumpdata_Size * 8;

533 Null_Dumpdata : constant Dumpdata_Type;

535 Dumpdata_Array_Size : constant
:= Positive (Dumpdata_Index’Last) * Dumpdata_Size;

537

type Dumpdata_Array is array (Dumpdata_Index) of Dumpdata_Type
539 with

Pack,
541 Size => Dumpdata_Array_Size * 8;

543 Null_Dumpdata_Array : constant Dumpdata_Array;

545 Dump_Type_Size : constant := Header_Type_Size + Dumpdata_Array_Size;

547 --D @Interface
--D The dump record type specifies the entire crash audit data structure.

549 type Dump_Type is record
--D @Interface

551 --D Audit header containing meta information for the management of the
--D crash audit data.

553 Header : Header_Type;
--D @Interface

555 --D Array of crash audit slots. The header field \texttt{Max_Dump_Count}
--D specifies the array length while \texttt{Dump_Count} identifies how

557 --D many slots are currently filled with audit information.
Data : Dumpdata_Array;

559 end record
with

561 Pack,
Size => Dump_Type_Size * 8,

56

563 Object_Size => Dump_Type_Size * 8;

565 Null_Dump : constant Dump_Type;

567 private

569 Null_Header : constant Header_Type
:= (Version_Magic => Crash_Magic,

571 Version_String => Null_Version_String,
Generation => 0,

573 Boot_Count => 1,
Crash_Count => 0,

575 Max_Dump_Count => Max_Dumps,
Dump_Count => 0,

577 Crc32 => 0,
Padding => 0);

579

Null_Validity_Flags : constant Validity_Flags_Type
581 := (Padding => 0,

others => False);
583

Null_Exception_Context : constant Exception_Context_Type
585 := (ISR_Ctx => Exceptions.Null_Isr_Context,

others => 0);
587

Null_MCE_Context : constant MCE_Context_Type
589 := (MCG_Status => 0,

Bank_Count => 0,
591 others => (others => 0));

593 Null_Subj_Ctx_Validity_Flags : constant Subj_Ctx_Validity_Flags_Type
:= (Intr_Info => False,

595 Intr_Error_Code => False,
others => 0);

597

Null_Subj_Context : constant Subj_Context_Type
599 := (Subject_ID => 0,

Field_Validity => Null_Subj_Ctx_Validity_Flags,
601 Padding => 0,

Intr_Info => 0,
603 Intr_Error_Code => 0,

Descriptor => Null_Subject_State,
605 FPU_Registers => Null_XSAVE_Legacy_Header);

607 Null_VTx_Ctx_Validity_Flags : constant VTx_Ctx_Validity_Flags_Type
:= (Padding => 0,

609 others => False);

611 Null_VTx_Context : constant VTx_Context_Type
:= (Field_Validity => Null_VTx_Ctx_Validity_Flags,

613 VMCS_Field => 0,
VM_Instr_Error => 0,

615 others => 0);

617 Null_System_Init_Context : constant System_Init_Context_Type
:= (Padding => 0,

619 others => False);

621 Null_FPU_Init_Context : constant FPU_Init_Context_Type
:= (Padding => 0,

623 others => False);

625 Null_MCE_Init_Context : constant MCE_Init_Context_Type
:= (Padding => 0,

627 others => False);

629 Null_VTd_IOMMU_Status : constant VTd_IOMMU_Status_Type
:= (others => False);

631

Null_VTd_IOMMU_Status_Array : constant VTd_IOMMU_Status_Array
633 := (others => Null_VTd_IOMMU_Status);

635 Null_VTd_Init_Context : constant VTd_Init_Context_Type

57

:= (IOMMU_Count => 0,
637 Status => Null_VTd_IOMMU_Status_Array);

639 Null_Init_Context : constant Init_Context_Type
:= (Sys_Ctx => Null_System_Init_Context,

641 FPU_Ctx => Null_FPU_Init_Context,
MCE_Ctx => Null_MCE_Init_Context,

643 VTd_Ctx => Null_VTd_Init_Context);

645 Null_Dumpdata : constant Dumpdata_Type
:= (TSC_Value => 0,

647 APIC_ID => 0,
Reason => Reason_Undefined,

649 Field_Validity => Null_Validity_Flags,
Exception_Context => Null_Exception_Context,

651 MCE_Context => Null_MCE_Context,
Subject_Context => Null_Subj_Context,

653 Init_Context => Null_Init_Context,
VTx_Context => Null_VTx_Context);

655

Null_Dumpdata_Array : constant Dumpdata_Array
657 := (others => Null_Dumpdata);

659 Null_Dump : constant Dump_Type
:= (Header => Null_Header,

661 Data => Null_Dumpdata_Array);

663 end SK.Crash_Audit_Types;

Listing 9.1: Crash Audit Data Types

58

Chapter 10

Bibliography

[1] AdaCore and Altran UK Ltd. SPARK Reference Manual. 2021. https://www.adacore.
com/documentation/spark-2014-reference-manual.

[2] Adrian-Ken Rueegsegger and Reto Buerki. Muen Component Specification.

[3] Adrian-Ken Rueegsegger and Reto Buerki. Muen System Specification.

[4] Ada Rapporteur Group (ARG). Ada Reference Manual. Language and Standard Libraries
- International Standard ISO/IEC 8652:2012 (E). ISO, 2012. https://www.ada-auth.
org/standards/12rm/html/RM-TTL.html.

[5] Intel Corporation. 82093AA I/O Advanced Programmable Interrupt Controller (IOAPIC).
Number 290566-001. May 1996.

[6] Intel Corporation. Intel® Virtualization Technology for Directed I/O. Number D51397-010.
June 2018.

[7] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual. Number
325462-070US. May 2019.

59

https://www.adacore.com/documentation/spark-2014-reference-manual
https://www.adacore.com/documentation/spark-2014-reference-manual
https://www.ada-auth.org/standards/12rm/html/RM-TTL.html
https://www.ada-auth.org/standards/12rm/html/RM-TTL.html

	Introduction
	Document Structure
	Source Code

	Overview
	System Architecture
	Policy
	Configuration
	Kernel Operation
	Separation of Subjects
	Scheduling
	Interrupts
	Exceptions
	Crash Audit
	Subject Interaction
	Avoidance of Covert Channels

	Data Model
	Multicore Support
	CPU-local Data
	Local Subject-related Data
	Global Shared Data

	Kernel State
	Per-CPU data
	Skp.IOMMU.IOMMUs
	SK.IO_Apic.Register_Select
	SK.IO_Apic.Window
	SK.Crash_Audit.Instance
	SK.Tau0_Interface.New_Major
	SK.FPU.Subject_FPU_States
	SK.Scheduling_Info.Sched_Info
	SK.Subjects.Descriptors
	SK.Subjects_Interrupts.Pending_Interrupts
	SK.Subjects_MSR_Store.MSR_Storage
	SK.Timed_Events.Subject_Events
	SK.VMX.VMCS

	CPU-Global State
	SK.Crash_Audit.Global_Next_Slot
	SK.IO_Apic.Global_IO_APIC_Lock
	SK.Subjects_Events.Global_Pending_Events
	SK.Scheduler.Global_Current_Major_Start_Cycles
	SK.Scheduler.Global_Current_Major_Frame_ID
	SK.Scheduler.Global_Group_Activity_Indicator
	SK.MP.Global_Minor_Frame_Barriers
	SK.MP.Global_All_Barrier

	Devices
	Interrupt Controllers
	IOMMU
	Timer
	Diagnostics

	Implementation
	Kernel Entry Points
	Initialization
	VMX Exit Handling
	Scheduling Partition Management
	Subject State Management
	Crash Audit
	VMCS Management
	Packages

	Verification
	SPARK
	Verification Conditions Summary (SPARK 2014)

	Appendix
	Crash Audit data structure

	Bibliography

